首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GTP-binding proteins couple cardiac muscarinic receptors to a K channel   总被引:12,自引:0,他引:12  
Binding of acetylcholine (ACh) to cardiac muscarinic ACh receptors (mAChR) activates a potassium channel that slows pacemaker activity. Although the time course of this activation suggests a multi-step process with intrinsic delays of 30-100 ms, no second-messenger system has been demonstrated to link the mAChR to the channel. Changes in cyclic nucleotide levels (cyclic AMP and cyclic GMP) do not affect this K channel or its response to muscarinic agonists. Indeed, electrophysiological experiments argue against the involvement of any second messenger that diffuses through the cytoplasm. We report here that coupling of the mAChR in embryonic chick atrial cells to this inward rectifying K channel requires intracellular GTP. Furthermore, pretreatment of cells with IAP (islet-activating protein from the bacterium Bordetella pertussis) eliminates the ACh-induced inward rectification. As IAP specifically ADP-ribosylates two GTP-binding proteins, Ni and No, that can interact with mAChRs, we conclude that a guanyl nucleotide-binding protein couples ACh binding to channel activation. This represents the first demonstration that a GTP-binding protein can regulate the function of an ionic channel without acting through cyclic nucleotide second messengers.  相似文献   

2.
G E Breitwieser  G Szabo 《Nature》1985,317(6037):538-540
Guanine nucleotide binding proteins, interchangeably called N or G proteins, seem to be the primary signal-transducing components of various agonist-induced cell membrane functions. In the heart, G proteins have been implicated in beta-adrenergic modulation of the slow inward Ca2+ current. We have investigated the role of G proteins in muscarinic activation of an inwardly rectifying, acetylcholine (ACh)-induced K+ current (IACh), and beta-adrenergic activation of an (isoprenaline)-induced Ca2+ current (Isi). Here we report that intracellular application of the non-hydrolysable GTP analogue 5'-guanylylimidodiphosphate (GppNHp) brought about an agonist-induced, antagonist-resistant, persistent activation of IACh and Isi. This functional uncoupling of channel from receptor suggests that the muscarinic receptor and the IACh channel are separate molecular structures. Membrane conductance responses to sequential activation of muscarinic and beta-adrenergic receptors demonstrate that in contrast to the muscarinic inhibition of Isi, muscarinic stimulation of IACh is mediated by a G protein via a pathway that does not involve adenylate cyclase. Taken together, the results support the notion that agonist is required to induce GppNHp binding and/or activation of the G proteins. Once triggered by agonist, the control system remains maximally activated, thereby transforming the cell so that it no longer responds to subsequent homologous receptor-mediated signals.  相似文献   

3.
D Kim  D L Lewis  L Graziadei  E J Neer  D Bar-Sagi  D E Clapham 《Nature》1989,337(6207):557-560
Muscarinic receptors of cardiac pacemaker and atrial cells are linked to a potassium channel (IK.ACh) by a pertussis toxin-sensitive GTP-binding protein. The dissociation of G-proteins leads to the generation of two potential transducing elements, alpha-GTP and beta gamma. IK.ACh is activated by G-protein alpha- and beta gamma-subunits applied to the intracellular surface of inside-out patches of membrane. beta gamma has been shown to activate the membrane-bound enzyme phospholipase A2 in retinal rods. Arachidonic acid, which is produced from the action of phospholipase A2 on phospholipids, is metabolized to compounds which may act as second messengers regulating ion channels in Aplysia. Muscarinic receptor activation leads to the generation of arachidonic acid in some cell lines. We therefore tested the hypothesis that beta gamma activates IK.ACh by stimulation of phospholipase A2. When patches were first incubated with antibody that blocks phospholipase A2 activity, or with the lipoxygenase inhibitor, nordihydroguaiaretic acid, beta gamma failed to activate IK.ACh. Arachidonic acid and several of its metabolites derived from the 5-lipoxygenase pathway, activated the channel. Blockade of the cyclooxygenase pathway did not inhibit arachidonic acid-induced channel activation. We conclude that the beta gamma-subunit of G-proteins activates IK.ACh by stimulating the production of lipoxygenase-derived second messengers.  相似文献   

4.
Studies of intracellular traffic in yeast and mammalian systems have implicated members of the Rab family of small GTP-binding proteins as regulators of membrane fusion. We have used the patch clamp technique to measure exocytotic fusion events directly and investigate the role of GTP-binding proteins in regulating exocytosis in mast cells. Intracellular perfusion of mast cells with GTP-gamma S is sufficient to trigger complete exocytotic degranulation in the absence of other intracellular messengers. Here we show that GTP is a potent inhibitor of GTP-gamma S-induced degranulation, indicating that sustained activation of a GTP-binding protein is sufficient for membrane fusion. We have found that synthetic oligopeptides, corresponding to part of the effector domain of Rab3a, stimulate complete exocytotic degranulation, similar to that induced by GTP-gamma S. The response is selective for Rab3a sequence and is strictly dependent on Mg2+ and ATP. This suggests that sustained activation of a Rab3 protein causes exocytotic fusion. The peptide response can be accelerated by GDP-beta S, suggesting that Rab3a peptides compete with endogenous Rab3 proteins for a binding site on a target effector protein, which causes fusion on activation.  相似文献   

5.
B Sakmann  A Noma  W Trautwein 《Nature》1983,303(5914):250-253
Acetylcholine (ACh) released on vagal stimulation reduces the heart rate by increasing K+ conductance of pacemaker cells in the sinoatrial (S-A) node. Fluctuation analysis of ACh-activated currents in pacemaker tissue showed this to be due to opening of a separate class of K+ channels gated by muscarinic ACh receptors (m-AChRs). On the other hand, it has been suggested that m-AChRs may simply regulate the current flow through inward rectifying resting K+ channels (gk1). We report here the measurement of ACh-activated single channel K+ currents and of resting K+ channel currents in isolated cells of the atrioventricular (A-V) and S-A node of rabbit heart. The results show that the ACh-dependent K+ conductance increase in nodal cells is mediated by K+ channels which are different in their gating and conductance properties from the inward rectifying resting K+ channels in atrial and ventricular cells. The resting K+ channels in nodal cells are, however, similar to those activated by ACh.  相似文献   

6.
Subsecond deactivation of transducin by endogenous GTP hydrolysis   总被引:1,自引:0,他引:1  
T M Vuong  M Chabre 《Nature》1990,346(6279):71-74
The response of a retinal rod cell to a weak flash of light is mediated by a receptor/GTP-binding protein (rhodopsin/transducin) signal transduction system and terminates within a second. The T alpha subunit of transducin (composed of subunits T alpha, T beta and T gamma) is triggered by photoexcited rhodopsin (R*) to release GDP and bind GTP. The binding of GTP causes release of the T alpha unit from T beta gamma and allows it to modulate the activity of an enzyme that generates a second messenger. Termination of the response requires the hydrolysis of the GTP by intrinsic GTPase. As with other G proteins, the GTPase activity of transducin seems to be slow. Reported in vitro turnover rates of a few molecules of GTP hydrolysed per molecule of transducin per minute imply a T alpha-GTP deactivation time of many seconds. But this time might be only a small fraction of that of the GTPase cycle. We have now used time-resolved microcalorimetry in bovine rod outer segments (ROS) to monitor the heat release due to the hydrolysis of GTP by a transducin population that had been quickly activated by flash illumination of rhodopsin. The enthalpy of GTP hydrolysis is released within 1 s at 23 degrees C. This deactivation time seems to be independent of any diffusible factor in the preparation and concurs with the termination kinetics of the rod's response. Thereafter, transducin seems unable to reload GTP for many seconds. This refractory 'resetting' time may account for the low steady-state GTPase rates in vitro.  相似文献   

7.
Protein targeting to the endoplasmic reticulum in mammalian cells is catalysed by signal recognition particle (SRP). Cross-linking experiments have shown that the subunit of relative molecular mass 54,000 (Mr 54K; SRP54) interacts directly with signal sequences as they emerge from the ribosome. Here we present the sequence of a complementary DNA clone of SRP54 which predicts a protein that contains a putative GTP-binding domain and an unusually methionine-rich domain. The properties of this latter domain suggest that it contains the signal sequence binding site. A previously uncharacterized Escherichia coli protein has strong homology to both domains. Closely homologous GTP-binding domains are also found in the alpha-subunit of the SRP receptor (SR alpha, docking protein) in the endoplasmic reticulum membrane and in a second E. coli protein, ftsY, which resembles SR alpha. Recent work has shown that SR alpha is a GTP-binding protein and that GTP is required for the release of SRP from the signal sequence and the ribosome on targeting to the endoplasmic reticulum membrane. We propose that SRP54 and SR alpha use GTP in sequential steps of the targeting reaction and that essential features of such a pathway are conserved from bacteria to mammals.  相似文献   

8.
Y Kurachi  H Ito  T Sugimoto  T Shimizu  I Miki  M Ui 《Nature》1989,337(6207):555-557
Arachidonic acid is released from cell membranes in response to receptor-dependent as well as receptor-independent stimulation in various cells, including cardiac myocytes. Arachidonic acid is converted to prostaglandins by cyclooxygenase and to leukotrienes by 5-lipoxygenase, metabolites which are very biologically active and modulate cellular functions such as platelet aggregation, smooth muscle contraction and neural excitation. The molecular mechanisms underlying their modulations are, however, still badly understood. Here, we report that the 5-lipoxygenase metabolites of arachidonic acid activate the pertussis toxin-sensitive G protein-gated muscarinic K+ channel (IK.ACh): arachidonic acid activation of IK.ACh was prevented by the lipoxygenase inhibitors, nordihydroguaiaretic acid and AA-861; leukotriene A4 and C4 activated IK.ACh. The activation occurred in pertussis toxin-treated atrial cells and ceased when inside-out patches were formed but the patches were still susceptible to stimulation by GTP and to inhibition by GDP-beta-S. These results indicate that arachidonic acid metabolites may stimulate the G-protein in a receptor-independent way.  相似文献   

9.
H Kume  A Takai  H Tokuno  T Tomita 《Nature》1989,341(6238):152-154
Isoprenaline is a beta-adrenergic agonist of clinical importance as a remedy for asthma. In airway smooth muscle its relaxant action is accompanied by hyperpolarization of the membrane and elevation of the level of intracellular cyclic AMP. Hyperpolarization and relaxation are also induced by drugs such as forskolin, theophylline and dibutyryl cAMP, indicating that cAMP-dependent phosphorylation is involved in producing the electrical response. Cyclic AMP-dependent protein kinase (protein kinase A) has been reported to activate Ca2+-dependent K+ channels in cultured aortic smooth muscle cells and snail neurons. The membrane of tracheal smooth-muscle cells is characterized by a dense distribution of Ca2+-dependent K+-channels. We have now examined the effect of isoprenaline and protein kinase A on Ca2+-dependent K+-channels in isolated smooth muscle cells of rabbit trachea, using the patch-clamp technique. Our results show that the open-state probability of Ca2+-dependent K+-channel of tracheal myocytes is reversibly increased by either extracellular application of isoprenaline or intracellar application of protein kinase A. We also show that this effect is significantly enhanced and prolonged in the presence of a potent protein phosphatase inhibitor, okadaic acid.  相似文献   

10.
Small GTP-binding protein associated with Golgi cisternae   总被引:53,自引:0,他引:53  
B Goud  A Zahraoui  A Tavitian  J Saraste 《Nature》1990,345(6275):553-556
Eukaryotic cells seem to use GTP hydrolysis to regulate vesicular traffic in exocytosis and endocytosis. The best evidence for this comes from studies on the yeast Saccharomyces cerevisiae that have identified two small Ras-related GTP-binding proteins, Sec4p and Ypt1p, which control distinct stages of the secretory pathway. In mammalian cells the effects of a non-hydrolysable GTP analogue, GTP-gamma S, on different transport events have suggested that they also have proteins functionally related to yeast Sec4p and Ypt1p. The rab genes have recently been cloned and sequenced for rat and human and their proteins have highly conserved domains in common with Sec4p and Ypt1p (including a putative effector binding site). They are therefore good candidates for GTP-binding proteins involved in intracellular transport in mammalian cells. One of the Rab proteins (Rab1p) is the mammalian counterpart of Ypt1p (ref. 13). Here we report the localization of the protein Rab6p to the Golgi apparatus in several cell types. By immunolabelling and electron microscopy, Rab6p appears to be concentrated predominantly on the medial and trans cisternae and distributed over their entire surface.  相似文献   

11.
P A Liebman  E N Pugh 《Nature》1980,287(5784):734-736
Weak or strong lights will activate visual receptor rod disk membrane (RDM) cyclic GMP phosphodiesterase (PDE) in the presence of GTP cofactor. A similarly activated GTPase can exhaust small amounts of initially present GTP to deactivate the PDE. However, further additions of GTP reactivate PDE without more light, and deactivation by simple GTP depletion takes minutes or more, even at GTP concentrations 100 to 1,000 times lower than physiological levels. A more rapid deactivation mechanism must exist if modulation of cytoplasmic cyclic GMP by light is to play a role on the time scale (seconds) of events in vision. We report here that ATP is essential to such rapid control and that its presence permits multiple cycles of activation-deactivation. The complete control mechanism seems to involve gamma phosphate transfer from both ATP and GTP.  相似文献   

12.
Acetyicholine (ACh) is an important neuro-chemical transmitter in animals; it also exists in plants and plays a significant role in various kinds of physiological functions in plants. ACh has been known to induce the stomatal opening. By monitoring the changes of cytusolic Ca^2 with fluorescent probe Fiuo-3 AM under the confocal microscopy, we found that exogenous ACh increased cytosolic Ca^2 concentration of guard cells of Vicia faba L. Muscarlne, an agonist of muscarine acetyicholine receptor (mAChR), could do so as well. In contrast, atropine, the antagonist of mAChR abolished the ability of ACh to increase Ca^2 in guard cells. This mechanism is similar to mAChR in animals. When EGTA was used to chelate Ca^2 or ruthenium red to block Ca^2 released from vacuole respectively, the results showed that the increased cytosolic Ca^2 mainly come from intracellular Ca^2 store. The evidence supports that Ca^2 is involved in guard-cell response to ACh and that Ca^2 sigual is coupled to mAChRs in ACh signal transduction in guard cells.  相似文献   

13.
T K Ghosh  J M Mullaney  F I Tarazi  D L Gill 《Nature》1989,340(6230):236-239
Inositol 1,4,5-trisphosphate (InsP3) is an established mediator of intracellular Ca2+ signals but little is known of the nature and organization of Ca2+ regulatory organelles responsive to InsP3. Here we derive new information from the study of Ca2+ movements induced both by InsP3 and a specific GTP-activated Ca2+ translocation process. The latter mechanism is clearly distinct from that activated by InsP3 and may involve the translocation of Ca2+ between compartments without its release into the cytosol. This idea is supported by the fact that GTP activates Ca2+ movement into the InsP3-releasable pool. In the light of this evidence we postulated that there are two intracellular Ca2+ pools distinguishable by InsP3-sensitivity and oxalate-permeability, and that movement between them is activated by GTP. We report here direct evidence for the existence and separation of two distinct Ca2+-pumping compartments with properties coinciding with those predicted. Of these, the InsP3-sensitive Ca2+ pool is identified within a purified rough endoplasmic reticulum fraction, an observation consistent with recent InsP3 receptor-localization studies. Ca2+ translocation between pools may reflect function of a class of small GTP-binding proteins known to mediate interorganelle transfer in eukaryotic cells.  相似文献   

14.
Interferons are immunomodulatory cytokines that mediate anti-pathogenic and anti-proliferative effects in cells. Interferon-gamma-inducible human guanylate binding protein 1 (hGBP1) belongs to the family of dynamin-related large GTP-binding proteins, which share biochemical properties not found in other families of GTP-binding proteins such as nucleotide-dependent oligomerization and fast cooperative GTPase activity. hGBP1 has an additional property by which it hydrolyses GTP to GMP in two consecutive cleavage reactions. Here we show that the isolated amino-terminal G domain of hGBP1 retains the main enzymatic properties of the full-length protein and can cleave GDP directly. Crystal structures of the N-terminal G domain trapped at successive steps along the reaction pathway and biochemical data reveal the molecular basis for nucleotide-dependent homodimerization and cleavage of GTP. Similar to effector binding in other GTP-binding proteins, homodimerization is regulated by structural changes in the switch regions. Homodimerization generates a conformation in which an arginine finger and a serine are oriented for efficient catalysis. Positioning of the substrate for the second hydrolysis step is achieved by a change in nucleotide conformation at the ribose that keeps the guanine base interactions intact and positions the beta-phosphates in the gamma-phosphate-binding site.  相似文献   

15.
It has been known that the neurotransmitter acetylcholine (ACh) also exists in plants and is able to regulate the movement of stomata.In another aspect,Ca^2 /CaM as the second messengers have a critical role of signal transduction in stomatal guard-cell,Here we showed that Ca^2 /CaM were also involved in the ACh regulated stomatal movement,In the medium containing Ca^2 ,the Ca^2 channel blockers (NIF and Ver)and CaM inhibitors (TFP and W7 ) could neutralize the ACh induced stomatal opening,however,they are ineffective in the medium containing K^ ,Those results indicated that Ca^2 /CaM were involved in the signal transduction pathway of ACh regulating stomatal movement.  相似文献   

16.
K Monica  Z Chen-Levy  M L Cleary 《Nature》1990,346(6280):189-191
The bcl-2 gene is consistently associated with t(14; 18) chromosomal translocations observed in a large fraction of human B-cell lymphomas. The t(14; 18) translocation results in deregulated expression of the bcl-2 gene and synthesis of inappropriately high levels of the Bcl-2 protein. Gene transfer studies suggest a role for Bcl-2 in cell survival, growth enhancement and oncogenic transformation. To test the suggestion that GTP-binding by Bcl-2 may mediate its biological effects we characterized the GTP-binding proteins in lymphoid cells expressing Bcl-2. Expression of several small GTP-binding proteins was found to be ubiquitous and did not vary with levels of Bcl-2. By using immunological, electrophoretic and cell-fractionation techniques, we separated Bcl-2 from G proteins of small relative molecular mass (Mr) and showed that it is incapable of binding GTP. Our results show that small Mr G proteins are widely expressed in lymphoid cells and that Bcl-2 is not a novel member of this GTP-binding protein family.  相似文献   

17.
Stimulation of certain receptor tyrosine kinases results in the tyrosine phosphorylation and activation of phospholipase C gamma (PLC gamma), an enzyme that catalyses the hydrolysis of phosphatidylinositol (PtdIns). This hydrolysis generates diacylglycerol and free inositol phosphate, which in turn activate protein kinase C and increase intracellular Ca2+, respectively. PLC gamma physically associates with activated receptor tyrosine kinases, suggesting that it is a substrate for direct phosphorylation by these kinases. Here we report that a fibroblast growth factor (FGF) receptor with a single point mutation at residue 766 replacing tyrosine with phenylalanine fails to associate with PLC gamma in response to FGF. This mutant receptor also failed to mediate PtdIns hydrolysis and Ca2+ mobilization after FGF stimulation. However, the mutant receptor phosphorylated itself and several other cellular proteins, and it mediated mitogenesis in response to FGF. These findings show that a point mutation in the FGF receptor selectively eliminates activation of PLC gamma and that neither Ca2+ mobilization nor PtdIns hydrolysis are required for FGF-induced mitogenesis.  相似文献   

18.
G G Holz  S G Rane  K Dunlap 《Nature》1986,319(6055):670-672
The modulation of voltage-dependent calcium channels by hormones and neurotransmitters has important implications for the control of many Ca2+-dependent cellular functions including exocytosis and contractility. We made use of electrophysiological techniques, including whole-cell patch-clamp recordings from dorsal root ganglion (DRG) neurones, to demonstrate a role for GTP-binding proteins (G-proteins) as signal transducers in the noradrenaline- and gamma-aminobutyric acid (GABA)-induced inhibition of voltage-dependent calcium channels. This action of the transmitters was blocked by: (1) preincubation of the cells with pertussis toxin (a bacterial exotoxin catalysing ADP-ribosylation of G-proteins); or (2) intracellular administration of guanosine 5'-O-(2-thiodiphosphate) (GDP-beta-S), a non-hydrolysable analogue of GDP that competitively inhibits the binding of GTP to G-proteins. Our findings provide the first direct demonstration of the G-protein-mediated inhibition of voltage-dependent calcium channels by neurotransmitters. This mode of transmitter action may explain the ability of noradrenaline and GABA to presynaptically inhibit Ca2+-dependent neurosecretion from DRG sensory neurones.  相似文献   

19.
Most T cells bear an antigen receptor that is a protein of a disulphide-linked heterodimer composed of an alpha chain and a beta chain associated with the non-polymorphic CD3 (T3) complex. A small subpopulation of thymic and peripheral T cells, as well as Thy-1+dendritic epidermal cells (dEC), express an alternative CD3-associated dimeric receptor composed of the product of the T-cell antigen receptor (TCR) gamma gene and a fourth chain, designated delta. Recently a new murine TCR constant-region gene, designated Cx, has been cloned and proposed as a candidate for the C delta gene. We have previously demonstrated that murine Thy-1+ dEC cell lines express a CD3-associated disulphide-linked heterodimer composed of a relative molecular mass Mr 41,000 (41K) gamma chain and a 50K delta chain. We have further analysed the receptor of one of these cloned dEC lines, 7-17.1, by endoglycosidase treatment of the isolated gamma and delta chains. The gamma chain was found to contain two N-linked oligosaccharide residues, consistent with the expression of a chain encoded by the V gamma 3 and C gamma 1 gene segments. The delta chain contains at least three N-linked oligosaccharides and has a core size of 38K. Northern blot analysis indicated the presence of abundant Cx messenger RNA in 7-17.1 cells. Immunoprecipitation with two antisera to peptides comprising distinct regions of the Cx sequence indicates that the delta chain is encoded by the Cx gene.  相似文献   

20.
K R?misch  J Webb  J Herz  S Prehn  R Frank  M Vingron  B Dobberstein 《Nature》1989,340(6233):478-482
Most proteins exported from mammalian cells contain a signal sequence which mediates targeting to and insertion into the membrane of the endoplasmic reticulum (ER). Involved in this process are the signal-recognition particle (SRP) and docking protein (DP), the receptor for SRP in the ER membrane. SRP interacts with the signal sequence on nascent polypeptide chains and retards their further elongation, which resumes only after interaction of the arrested ribosomal complex with the docking protein. SRP is a ribonucleoprotein particle comprising a 7S RNA and six polypeptides with relative molecular masses (Mr) of 9,000 (9K) 14K, 19K, 54K, 68K and 72K (ref. 1). The 9K and 14K proteins are essential for elongation arrest and the 68K-72K heterodimer is required for docking to the ER membrane. The 54K protein binds to the signal sequence when it emerges from the ribosome. Docking protein consists of two polypeptides, a 72K alpha-subunit (DP alpha) and a 30K beta-subunit (DP beta). No components structurally homologous to SRP and docking protein have yet been found in yeast or Escherichia coli. To understand the molecular nature of the interaction between the signal sequence and its receptor(s) we have characterized a complementary DNA coding for the 54K protein of SRP. Significant sequence homology was found to part of DP alpha and two E. coli proteins of unknown function. The homologous region includes a putative GTP-binding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号