首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
电极是实现高效电化学储能的基础,而常规的电极大多采用半导体甚至绝缘体为活性材料,不仅存在导电性差、电化学利用率低、倍率性能差等问题,而且部分电极材料在反应过程中还存在体积膨胀严重、中间产物流失等缺点,导致电极循环稳定性差.解决这些问题的有效途径之一是从电极材料的微纳结构入手,设计兼具高电化学活性及高结构稳定性的材料.石墨烯具有优异的导电性、超高的比表面积、柔性的二维结构及良好的机械性能,可用于构建高性能复合电极.石墨烯基电极材料结构主要包括核壳结构、三维网络结构、多级孔结构、三明治结构等,这些结构均对电化学储能器件的性能有不同程度的提升.本文以结构设计为主线总结了石墨烯在二次电池(如锂离子电池、锂硫电池和锂空气电池)电极材料结构设计中的应用,分析了不同结构类型在改善电化学性能方面的优势,为提高电化学储能体系的性能带来启示.  相似文献   

2.
在超临界CO2中以聚合物PEG20000为模板,乙酰丙酮铁为前驱体制备Fe2O3多孔材料.研究了压力和温度对插嵌率的影响,并对材料进行了TG、XRD、N2吸脱附及SEM等表征.X射线衍射结果表明,产物主要由α-Fe2O3组成.根据产物的N2吸附-脱附等温线计算,产物的比表面积可迭361.01 m2/g,平均孔径为8 nm左右.SEM测试结果表明,产物由形状不规则的带有疏松结构的碎片组成.  相似文献   

3.
电化学储能材料的微结构、尺寸、形貌等特征直接影响着电化学储能设备的性能,例如能量密度、功率密度、寿命等.因此,合成高电化学活性的电极材料是储能设备性能的重要制约因素.在电极材料的合成过程中,化学反应是材料合成的第一个步骤,然后经过结晶过程最终得到电极材料.通过控制化学反应和结晶过程,可以得到具有不同活性的电极材料.电极材料制备过程中的化学反应以及电能储存过程中的电化学反应都是本文要研究的问题.虽然在材料合成方面取得了巨大的进步,能够合成各种不同形貌、结构和性能的电极材料,但是对化学反应如何控制材料的结晶、结晶过程如何影响材料的电化学性能以及电极材料和电化学活性的对应关系,依然缺少深入的理解.本文通过研究反应控制的结晶过程以及结晶影响的电化学性能,揭示化学反应-结晶、结晶-电化学性能和化学反应-电化学性能的关系,以及提高储能材料综合性能的途径.  相似文献   

4.
以单分散性聚甲基丙烯酸甲酯(PMMA)微球自组装形成的有序胶体晶体结构为模板, 制备了铟锡氧化物(ITO)有序大孔材料. 以扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及低温N2吸附/脱附等方法对ITO大孔材料的形态及其比表面积进行了表征. 结果表明, 烧结温度在500℃时, 能够得到较为完善的三维ITO大孔材料, 空间排布高度有序, 其有序结构与模板中PMMA微球自组装方式完全相同. 孔径大小均匀(~450 nm), 较之PMMA微球有所收缩, BET比表面积为389 m2 · g-1, 孔容为0.36 cm3 · g-1. 此外, 发现Sn掺杂率物质的量比为5%时, 在真空中退火, ITO大孔材料的导电性能最好, 电阻率为8.2×10-3 W · cm, 初步讨论了ITO大孔材料的导电机制, 认为氧缺位是获得较好电性能的主要原因.  相似文献   

5.
以NH_4VO_3为原料,通过180℃下水热反应和550℃下NH_3处理制备了多孔氮化钒(VN)纳米带气凝胶,并对多孔VN纳米带气凝胶的电化学性能进行了分析.SEM和TEM分析表明所制备的多孔VN纳米带的宽度为100~400 nm,孔尺寸为10~20 nm.电化学阻抗谱分析表明多孔VN纳米带气凝胶对I3.还原反应具有很高的催化活性,电荷迁跃电阻为1.36Ωcm~2.用多孔VN纳米带气凝胶电极组装的染料敏化太阳电池的光电转换效率为7.05%,与传统的Pt电极电池相近.循环伏安和恒流充放电实验表明多孔VN纳米带气凝胶具有较好的电容性能.当电流密度为0.5 A/g时,多孔VN纳米带气凝胶在2 mol/L KOH溶液中的比电容达到292.2 F/g.因此,所制备的多孔VN纳米带气凝胶可以作为高效的电极材料应用于染料敏化太阳电池对电极和超级电容器电极中.  相似文献   

6.
Bi_4Ti_3O_(12)是一种兼具有高居里温度和高电阻率的铋层状结构压电材料.本文利用Pr~(3+),Nb~(5+)分别对其A位Bi~(3+)和B位Ti~(4+)进行掺杂改性,采用传统固相法制备了Bi_(4-x)Pr_xTi_(2.92)Nb_(0.08)O_(12)(BITN-xPr,0≤x≤0.1)陶瓷,通过控制Nb~(5+)离子的量不变,调节Pr~(3+)离子的浓度来研究不同稀土离子掺杂量对Bi_4Ti_3O_(12)陶瓷的结构形貌、光致发光、介电以及铁电压电性能的影响.经X射线衍射(XRD)测试表明所有样品都具有单一正交相结构,且扫描电子显微镜(SEM)显示陶瓷具有层状形貌特征,拉曼光谱表明Pr~(3+)离子取代钙钛矿层的A位Bi~(3+)离子,导致TiO6八面体发生扭曲.通过蓝光和紫外激光对Bi_(4-x)Pr_xTi_(2.92)Nb_(0.08)O_(12)陶瓷进行激发,可获得红色发光,使其有望作为红色荧光粉应用于蓝色基的白光LED照明.随着Pr浓度的增加,红色发光强度呈现出先增强后减弱的规律,居里温度表现出小幅度下降;另外,陶瓷的压电铁电性能均得到一定程度的改善,以上结果表明Bi_(4-x)Pr_xTi_(2.92)Nb_(0.08)O_(12)陶瓷是一种兼具铁电压电以及光致发光性能的多功能材料.  相似文献   

7.
最大m值法是获得高超塑延伸率的有效方法之一.本文采用最大m值法对Ti-23Al-17Nb(at.%)合金在温度为940~1000℃、不同方向的超塑拉伸变形行为进行了研究.结果表明:在垂直轧制方向、1000℃条件下进行超塑拉伸,获得的最高延伸率为2507.4%,是至今该类Ti3Al基合金所报道的文献中的最高值.随着变形温度和变形量的增加,原始长条α_2晶粒重复经历拉长、断裂和球化的过程,这是获得高延伸率的原因之一,也是各向异性始终存在的原因.在一定变形条件下,α_2晶粒尺寸和体积分数较大时更有利于Ti3Al基合金的超塑性.1000℃变形时大应变会诱发O相析出,增加了合金抵抗颈缩的能力,从而获得更高的延伸率.  相似文献   

8.
开发兼具高催化活性和优良流体力学与传质性能的催化剂对发展高效水处理臭氧氧化技术具有重要意义.本研究开发了以廉价无机金属盐为原料的前驱体溶胶预混-海藻酸水凝胶球模板法,实现了Ce-Ti双金属氧化物介孔毫米球催化剂的经济制备.通过N_2吸附-脱附、XRD、XPS、SEM-EDS、TEM-SAED、拉曼光谱、NH_3-TPD等手段对制备的催化剂进行系统表征,考察Ce/Ti摩尔比和煅烧温度对催化剂结构和催化活性的影响,探究其催化臭氧氧化的特性与机理.结果表明无定形材料催化活性高于晶型材料,催化活性与表面酸性位点密度呈正相关,阐明了羟基自由基为该材料催化臭氧氧化的主要活性物种.优选的Ce_(0.5)Ti_(0.5)O_2介孔毫米球具有高比表面积(199 m~2g~(–1))、适宜的介孔结构(平均孔径3.59 nm),富含Ce–O–Ti键活性位点,催化臭氧氧化活性高,可在90 min内将100 mg L~(–1)草酸几乎完全矿化(99%),连续5轮重复实验后催化活性无明显降低,呈现出优异的催化稳定性.另外, Ce_(0.5)Ti_(0.5)O_2介孔毫米球催化臭氧氧化降解双氯芬酸等四种污染物的矿化率相比无催化剂臭氧氧化提高18.7%~54.0%,展现出优良的应用前景.  相似文献   

9.
用X射线研究由PI膜制备石墨化碳微晶的结构特性   总被引:3,自引:0,他引:3  
用X射线衍射技术对固相炭化过的PI(聚酰亚胺)膜的石墨化碳微晶的结构特征进行了考察.结果表明,该薄膜的石墨化始于热处理温度2 100℃左右;在2825℃及其以上温度热处理过的薄膜样品的微晶碳层具有很好的取向,并呈现出明显的多相石墨化现象,获得了该试样的镶嵌结构信息;对于3 160℃热处理过的薄膜样品来说,其层间距和镶嵌度分别为0.335 45nm和5.4°. 同时,就其石墨化度稍有不同的两种结晶相的来源进行了一些推理性的讨论,这对更全面地了解该类石墨化产物的结构提供了新的科学知识.  相似文献   

10.
研究了热压烧结的Ti3AlC2(含有2.8%(质量分数)的TiC)在900~1300℃空气中的恒温氧化行为.结果表明,该材料具有良好的抗高温氧化性能,其氧化行为遵循抛物线规律.随着温度升高,氧化抛物线速率常数kp从900℃的1.39×10?10增大到1300℃的5.56×10?9kg2·m?4·s?1,计算得到的氧化活化能为136.45kJ/mol.在900~1100℃时,氧化产物为α-Al2O3和TiO2;当温度达到1200℃时,TiO2开始部分地转变为Al2TiO5;氧化温度升高到1300℃,Ti在氧化层中完全以Al2TiO5的形式存在.氧化过程由Al3 和Ti4 的向外扩散和O2?的向内扩散控制.Al3 和Ti4 的快速向外扩散在基体与氧化层界面处导致大量的缺陷的形成.  相似文献   

11.
采用溶胶凝胶法对LiMn1/3Co1/3Ni1/3O2表面包覆了1.0wt%的CeO2.采用X射线衍射(XRD),扫描电镜(SEM),循环伏安(CV)和恒流充放电对包覆和未包覆的LiMn1/3Co1/3Ni1/3O2进行了结构表征与性能测试分析.研究显示,CeO2并没有改变电极材料的晶体结构,仅在电极材料表面形成均匀的包覆层.包覆1.0wt%CeO2后的材料的放电容量和循环性能均明显优于未包覆的材料.在20mA·g-1的电流密度下,包覆1.0wt%CeO2后的材料的放电容量为182.5mAh·g-1而未包覆的材料仅为165.8mAh·g-1.包覆1.0wt%CeO2后的材料在3.0C下循环12周后的容量保持率达93.2%,而未包覆的材料的容量保持率仅为86.6%.CV测试表明,CeO2包覆层可以有效的防止正极材料与电解液的直接接触,抑制了材料结构的转变或抑制了与电解液的副反应,从而提高了材料的电化学性能.  相似文献   

12.
晶种诱导长柱状晶生长规律与高韧性氧化铝陶瓷材料   总被引:5,自引:0,他引:5  
研究了晶种引入和烧结方式对氧化铝长柱状晶粒生长和氧化铝陶瓷断裂韧性的影响. 实验以氢氧化铝为初始原料, 通过湿法球磨把高纯氧化铝磨球的磨屑作为晶种引入到氢氧化铝粉料中, 使氢氧化铝粉在较低温度锻烧转相为α相氧化铝. 研究发现这种转相后的α相氧化铝粉(含有晶种)经热压烧结可获得长柱状晶显微结构, 并且Al2O3晶粒形貌随晶种的引入量的不同而发生变化, 而无压烧结Al2O3晶粒主要呈等轴状. 具有长柱状α-Al2O3晶粒的微观结构可显著提高氧化铝材料的断裂韧性. 在40 MPa热压烧结(1600℃×2 h)的试样, 断裂韧性达到7.10 MPa·m1/2, 比普通的氧化铝陶瓷断裂韧性提高1倍, 并且抗弯强度也高达630 MPa.  相似文献   

13.
电化学沉积加工技术是一种以原子量级逐层堆叠方式来进行金属基材料制备与零件制造的特种加工技术,具有适用材料广、实施温度低(一般70℃以下)、应用形式灵活、易于控性控形、不受尺寸限制等优点,在面向金属微增材制造方面颇具发展潜能.本文主要介绍了以电化学沉积工艺为主体来制造三维金属微结构与零件的代表性技术,包括掩膜电沉积、即膜沉积、electrochemical fabrication(EFAB)、局域生长电沉积、喷射电沉积、电化学打印、月牙形电解液约束三维电沉积成形、电化学扫描隧道显微镜技术等,着重阐释了它们的工艺原理、关键技术、优势与不足以及存在的主要问题和挑战,并对该技术领域未来的发展趋势和研究重点进行了展望.  相似文献   

14.
在0~6 GPa压力下研究NaNbO3材料的合成及结构随压力变化的规律.通过施加压力, 在相对较低的温度(300℃)下可以合成纯度高的NaNbO3陶瓷粉料, 极大地降低了Na元素的挥发. 随着压力的增加, 合成的NaNbO3陶瓷材料具有从对称低的晶格体结构向对称高的晶格体结构转化的趋势.  相似文献   

15.
研究了热压烧结的Ti3AlC2 (含有2.8%(质量分数)的TiC)在900~1300℃空气中的恒温氧化行为. 结果表明, 该材料具有良好的抗高温氧化性能, 其氧化行为遵循抛物线规律. 随着温度升高, 氧化抛物线速率常数kp从900℃的1.39×10-10增大到1300℃的5.56 × 10-9 kg2·m-4·s-1, 计算得到的氧化活化能为136.45 kJ/mol. 在900~1100℃时, 氧化产物为α-Al2O3和TiO2; 当温度达到1200℃时, TiO2开始部分地转变为Al2TiO5; 氧化温度升高到1300℃, Ti在氧化层中完全以Al2TiO5的形式存在. 氧化过程由Al3+和Ti4+的向外扩散和O2-的向内扩散控制. Al3+和Ti4+的快速向外扩散在基体与氧化层界面处导致大量的缺陷的形成.  相似文献   

16.
氧化铈介孔材料的研究进展   总被引:3,自引:0,他引:3  
随着对介孔材料的深入研究,CeO2介孔材料因其大比表面积、规则的孔道结构和对金属的高分散性等独特的性能而备受关注。本文详细地论述了介孔CeO2的合成机理与方法,简要地介绍了介孔CeO2的性质和在燃料电池电极以及催化上的应用。最后展望了介孔CeO2的发展前景。  相似文献   

17.
兼具高功率密度与高能量密度的储电技术是电化学储能领域的终极目标,寻找新型储电体系成为实现这一目标的重要策略.超级电容电池融合二次电池和超级电容器的优势,实现高功率密度和高能量密度在同一时空的统一.作为关键电极材料,超级电容电池型电极材料具有快速的电子和离子传输通道,在热力学、动力学允许条件下实现最大化利用氧化还原活性阳离子.目前开发的胶体离子超级电容电池能量密度可以达到350 Wh/kg,功率密度达到2 kW/kg.超级电容电池储电设备特别适合应用于脉冲电源、电磁弹射、能量回收、启停电源等领域.  相似文献   

18.
采用Fe_3O_4/Al铝热体系,在超重力场中熔铸出硬度呈梯度分布的复合材料,而后制备出饲草料收获机械的自磨锐切刀并进行了现场试验.结果表明,Fe_3O_4/Al铝热剂体系的绝热温度为3148.2 K(Fe的沸点温度),约2 mol%的产物Fe以气相存在.体系内添加约15 mass%的高硬铁基合金颗粒(钒铁、铬铁、锰铁、钼铁等)稀释剂,可使Fe产物全部以高温(3148 K)低黏度液相存在,这对于超重力场中梯度材料成型十分有利.梯度材料的基体是具有择优取向的柱状晶组织,高硬铁基合金颗粒沿超重力方向呈线性排列且与基体冶金结合,由于密度及熔点不同,不同颗粒在复合材料内的分布状况有较大差异,这是材料硬度呈梯度变化的主要原因.新材料制备的饲草料收获机械切刀刃面硬度呈梯度分布,工作过程中会均匀磨损而形成自磨刃,始终保持锋利的切割性能.现场试验结果表明,该自磨锐切刀具有良好的使用效果.  相似文献   

19.
借助非等温结晶动力学理论模型,较为系统地研究了低温保护剂微液滴在液氮表面冷冻过程中的温度和结晶度分布.研究结果表明,微液滴在经历相变温区时,呈现出表面区域结晶度最高,中间次之,中心区域最低的变化规律;且浓度越高,温度和结晶度分布越不均匀,如50%甘油微滴表面区域与中心区域温差为8K,但前者的结晶度大约是后者的41倍,而对于微水滴,两个区域的温差为1.10K,结晶度则相差6倍;微液滴体积对低浓度溶液的最终结晶度没有影响,只是延长了其冻结相变持续时间,如2和8μL20%甘油的相变时间分别约为14.48和19.82s;而对于高浓度溶液,没有明显的冻结相变温区,但呈现出体积越大,结晶度越高的变化规律,如2和8μL50%甘油的结晶度分别约为0.29×10~(-6)和0.80×10~(-6);随着低温保护剂浓度的增大,其相变温度会明显降低(水为273K,20%甘油为250K,50%甘油为225K,Vs55为158K),其最终结晶度也会显著降低,如20%和50%甘油溶液的最终结晶度分别为1和5.61×10~(-7),而Vs55仅有5.70×10~(-16).  相似文献   

20.
本文设计并制备了一种用于无酶电化学过氧化氢传感的新型银-硫化银/硫化钼复合材料(Ag-Ag_2S/MoS_2).通过将单独合成的MoS_2水分散液和Ag纳米分散液进行混合,利用自组装的方法实现了Ag-Ag_2S/MoS_2复合材料的制备.结果发现, Ag-Ag_2S纳米颗粒均匀生长在由多层片状MoS_2堆积形成的花瓣上, Ag_2S主要存在于Ag纳米颗粒和MoS_2片层的接触界面处.将此复合材料用于电化学传感时,修饰的电极表现出诱人的无酶电化学H_2O_2传感性能,不但具有极宽的线性区间范围(0.01~160 mmol/L),而且保持很好的灵敏度17.1μA (mmol/L)~(-1)cm~(-2)和较小的最低检测限4.8μmol/L.这种优良的性能归因于Ag, Ag_2S颗粒和MoS_2片层三者间的协同作用:Ag和MoS_2本身都具有良好的过氧化氢催化活性, Ag纳米颗粒和1T相MoS_2能显著提高复合材料的导电性能,界面形成的少量Ag_2S为Ag和MoS_2间的电子传输提供了通道.进一步的分析表明,这种基于Ag-Ag_2S/MoS_2复合材料的传感器还表现出卓越的选择性、良好的稳定性和重现性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号