首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
Jasmin L  Rabkin SD  Granato A  Boudah A  Ohara PT 《Nature》2003,424(6946):316-320
It is known that pain perception can be altered by mood, attention and cognition, or by direct stimulation of the cerebral cortex, but we know little of the neural mechanisms underlying the cortical modulation of pain. One of the few cortical areas consistently activated by painful stimuli is the rostral agranular insular cortex (RAIC) where, as in other parts of the cortex, the neurotransmitter gamma-aminobutyric acid (GABA) robustly inhibits neuronal activity. Here we show that changes in GABA neurotransmission in the RAIC can raise or lower the pain threshold--producing analgesia or hyperalgesia, respectively--in freely moving rats. Locally increasing GABA, by using an enzyme inhibitor or gene transfer mediated by a viral vector, produces lasting analgesia by enhancing the descending inhibition of spinal nociceptive neurons. Selectively activating GABA(B)-receptor-bearing RAIC neurons produces hyperalgesia through projections to the amygdala, an area involved in pain and fear. Whereas most studies focus on the role of the cerebral cortex as the end point of nociceptive processing, we suggest that cerebral cortex activity can change the set-point of pain threshold in a top-down manner.  相似文献   

2.
采用在体细胞外单细胞记录方法,研究电刺激杏仁外侧核对调频声所诱发的听皮层神经元反应的影响.实验在34只乌拉坦麻醉的SD大鼠上进行,在皮层41区记录了113个对调频声有反应的细胞电活动.观察发现,这些神经元对调频声刺激的反应可分为ON反应,OFF反应,ON-OFF反应,持续性反应和给声抑制反应几种类型.在观察对其中42个神经元的声反应时给予了杏仁外侧核电刺激,其中22%的神经元反应被易化,48%的神经元反应受到了抑制,另外30%神经元的声反应未受杏仁外侧核刺激的影响.这些影响进一步表明,杏仁复合体可在皮层水平参与听觉上传信息的处理,包括听觉信息的加工与整合.同时也表明杏仁核在上传听觉信息的筛选中可能具有重要的作用.  相似文献   

3.
W Thompson 《Nature》1983,302(5909):614-616
The synaptic connections among the cells of the vertebrate nervous system undergo extensive rearrangements early in development. During their initial growth, neurones apparently form synaptic connections with an excessive number of targets, later retracting a portion of these synapses in establishing the adult neural circuits. Because of the profound effects which experience has upon the developing nervous system, a question of considerable interest has been the role which the functional use of these developing synapses might play in determining the final pattern of connectivity. At the neuromuscular junction the early changes in synaptic connections are well documented, and here questions about the importance of function can be relatively easily addressed. Mammalian skeletal muscle fibres experience a perinatal period of synapse elimination so that all but one of several synapses formed on each muscle fibre are lost. This synapse elimination is sensitive to alterations of neuromuscular use or activity. Reduction of muscle use by tenotomy or by paralysis of the muscle with drugs blocking nerve impulse conduction or neuromuscular transmission delays or even prevents synapse loss, while increased use produced by stimulation of the muscle nerve apparently accelerates the rate at which synapses are lost. I report here a further examination of the role of neuromuscular activity in synapse elimination. I show that chronic neuromuscular stimulation accelerates synapse elimination but that this acceleration is dependent on the temporal pattern in which the stimuli are presented: brief stimulus trains containing 100 Hz bursts of stimuli produce this acceleration whereas the same number of stimuli presented continuously at 1 Hz do not. Furthermore, the 100 Hz activity pattern which is effective in altering synapse elimination also alters two other muscle properties: the sensitivity of the muscle fibers to acetylcholine and the 'speed' of muscle contractions. These findings suggest that the ability of muscle fibres to maintain more than one nerve terminal, like other muscle properties, is sensitive to the pattern of muscle use rather than just the total amount of use.  相似文献   

4.
Efficient auditory coding   总被引:2,自引:0,他引:2  
Smith EC  Lewicki MS 《Nature》2006,439(7079):978-982
The auditory neural code must serve a wide range of auditory tasks that require great sensitivity in time and frequency and be effective over the diverse array of sounds present in natural acoustic environments. It has been suggested that sensory systems might have evolved highly efficient coding strategies to maximize the information conveyed to the brain while minimizing the required energy and neural resources. Here we show that, for natural sounds, the complete acoustic waveform can be represented efficiently with a nonlinear model based on a population spike code. In this model, idealized spikes encode the precise temporal positions and magnitudes of underlying acoustic features. We find that when the features are optimized for coding either natural sounds or speech, they show striking similarities to time-domain cochlear filter estimates, have a frequency-bandwidth dependence similar to that of auditory nerve fibres, and yield significantly greater coding efficiency than conventional signal representations. These results indicate that the auditory code might approach an information theoretic optimum and that the acoustic structure of speech might be adapted to the coding capacity of the mammalian auditory system.  相似文献   

5.
Localization of nitric oxide synthase indicating a neural role for nitric oxide.   总被引:142,自引:0,他引:142  
D S Bredt  P M Hwang  S H Snyder 《Nature》1990,347(6295):768-770
Nitric oxide (NO), apparently identical to endothelium-derived relaxing factor in blood vessels, is also formed by cytotoxic macrophages, in adrenal gland and in brain tissue, where it mediates the stimulation by glutamate of cyclic GMP formation in the cerebellum. Stimulation of intestinal or anococcygeal nerves liberates NO, and the resultant muscle relaxation is blocked by arginine derivatives that inhibit NO synthesis. It is, however, unclear whether in brain or intestine, NO released following nerve stimulation is formed in neurons, glia, fibroblasts, muscle or blood cells, all of which occur in proximity to neurons and so could account for effects of nerve stimulation on cGMP and muscle tone. We have now localized NO synthase protein immunohistochemically in the rat using antisera to the purified enzyme. We demonstrate NO synthase in the brain to be exclusively associated with discrete neuronal populations. NO synthase is also concentrated in the neural innervation of the posterior pituitary, in autonomic nerve fibres in the retina, in cell bodies and nerve fibres in the myenteric plexus of the intestine, in adrenal medulla, and in vascular endothelial cells. These prominent neural localizations provide the first conclusive evidence for a strong association of NO with neurons.  相似文献   

6.
Kraemer DJ  Macrae CN  Green AE  Kelley WM 《Nature》2005,434(7030):158
Auditory imagery occurs when one mentally rehearses telephone numbers or has a song 'on the brain'--it is the subjective experience of hearing in the absence of auditory stimulation, and is useful for investigating aspects of human cognition. Here we use functional magnetic resonance imaging to identify and characterize the neural substrates that support unprompted auditory imagery and find that auditory and visual imagery seem to obey similar basic neural principles.  相似文献   

7.
J R Slack  W G Hopkins  M N Williams 《Nature》1979,282(5738):506-507
When disease or injury causes partial loss of innervation from a muscle, the remaining axons sprout and form new connections to the denervated muscle fibres. Sprouting can occur in two ways: from axon terminals (terminal sprouting) or from the intramuscular axons themselves, probably from the nodes of Ranvier (collateral sprouting). Terminal sprouting has been induced experimentally using various methods, including partial denervation, nerve conduction block and nerve transmission block. A common factor in the induction of terminal sprouting seems to be changes in the surface membrane of muscle fibres; these changes and terminal sprouting are prevented by direct stimulation of the muscle. Collateral sprouting has been induced only by partial denervation and is not prevented by direct stimulation. This has been taken as evidence for an earlier suggestion that products of nerve or axon degeneration may be a direct stimulus for collateral sprouting. We report here that axon degeneration products alone are probably not the stimulus for collateral sprouting.  相似文献   

8.
Eliades SJ  Wang X 《Nature》2008,453(7198):1102-1106
Vocal communication involves both speaking and hearing, often taking place concurrently. Vocal production, including human speech and animal vocalization, poses a number of unique challenges for the auditory system. It is important for the auditory system to monitor external sounds continuously from the acoustic environment during speaking despite the potential for sensory masking by self-generated sounds. It is also essential for the auditory system to monitor feedback of one's own voice. This self-monitoring may play a part in distinguishing between self-generated or externally generatedauditory inputs and in detecting errors in our vocal production. Previous work in humans and other animals has demonstrated that the auditory cortex is largely suppressed during speaking or vocalizing. Despite the importance of self-monitoring, the underlying neural mechanisms in the mammalian brain, in particular the role of vocalization-induced suppression, remain virtually unknown. Here we show that neurons in the auditory cortex of marmoset monkeys (Callithrix jacchus) are sensitive to auditory feedback during vocal production, and that changes in the feedback alter the coding properties of these neurons. Furthermore, we found that the previously described cortical suppression during vocalization actually increased the sensitivity of these neurons to vocal feedback. This heightened sensitivity to vocal feedback suggests that these neurons may have an important role in auditory self-monitoring.  相似文献   

9.
Froemke RC  Merzenich MM  Schreiner CE 《Nature》2007,450(7168):425-429
Receptive fields of sensory cortical neurons are plastic, changing in response to alterations of neural activity or sensory experience. In this way, cortical representations of the sensory environment can incorporate new information about the world, depending on the relevance or value of particular stimuli. Neuromodulation is required for cortical plasticity, but it is uncertain how subcortical neuromodulatory systems, such as the cholinergic nucleus basalis, interact with and refine cortical circuits. Here we determine the dynamics of synaptic receptive field plasticity in the adult primary auditory cortex (also known as AI) using in vivo whole-cell recording. Pairing sensory stimulation with nucleus basalis activation shifted the preferred stimuli of cortical neurons by inducing a rapid reduction of synaptic inhibition within seconds, which was followed by a large increase in excitation, both specific to the paired stimulus. Although nucleus basalis was stimulated only for a few minutes, reorganization of synaptic tuning curves progressed for hours thereafter: inhibition slowly increased in an activity-dependent manner to rebalance the persistent enhancement of excitation, leading to a retuned receptive field with new preference for the paired stimulus. This restricted period of disinhibition may be a fundamental mechanism for receptive field plasticity, and could serve as a memory trace for stimuli or episodes that have acquired new behavioural significance.  相似文献   

10.
11.
Knowledge or experience is voluntarily recalled from memory by reactivation of the neural representations in the cerebral association cortex. In inferior temporal cortex, which serves as the storehouse of visual long-term memory, activation of mnemonic engrams through electric stimulation results in imagery recall in humans, and neurons can be dynamically activated by the necessity for memory recall in monkeys. Neuropsychological studies and previous split-brain experiments predicted that prefrontal cortex exerts executive control upon inferior temporal cortex in memory retrieval; however, no neuronal correlate of this process has ever been detected. Here we show evidence of the top-down signal from prefrontal cortex. In the absence of bottom-up visual inputs, single inferior temporal neurons were activated by the top-down signal, which conveyed information on semantic categorization imposed by visual stimulus-stimulus association. Behavioural performance was severely impaired with loss of the top-down signal. Control experiments confirmed that the signal was transmitted not through a subcortical but through a fronto-temporal cortical pathway. Thus, feedback projections from prefrontal cortex to the posterior association cortex appear to serve the executive control of voluntary recall.  相似文献   

12.
Houweling AR  Brecht M 《Nature》2008,451(7174):65-68
Understanding how neural activity in sensory cortices relates to perception is a central theme of neuroscience. Action potentials of sensory cortical neurons can be strongly correlated to properties of sensory stimuli and reflect the subjective judgements of an individual about stimuli. Microstimulation experiments have established a direct link from sensory activity to behaviour, suggesting that small neuronal populations can influence sensory decisions. However, microstimulation does not allow identification and quantification of the stimulated cellular elements. The sensory impact of individual cortical neurons therefore remains unknown. Here we show that stimulation of single neurons in somatosensory cortex affects behavioural responses in a detection task. We trained rats to respond to microstimulation of barrel cortex at low current intensities. We then initiated short trains of action potentials in single neurons by juxtacellular stimulation. Animals responded significantly more often in single-cell stimulation trials than in catch trials without stimulation. Stimulation effects varied greatly between cells, and on average in 5% of trials a response was induced. Whereas stimulation of putative excitatory neurons led to weak biases towards responding, stimulation of putative inhibitory neurons led to more variable and stronger sensory effects. Reaction times for single-cell stimulation were long and variable. Our results demonstrate that single neuron activity can cause a change in the animal's detection behaviour, suggesting a much sparser cortical code for sensations than previously anticipated.  相似文献   

13.
S Bao  V T Chan  M M Merzenich 《Nature》2001,412(6842):79-83
Representations of sensory stimuli in the cerebral cortex can undergo progressive remodelling according to the behavioural importance of the stimuli. The cortex receives widespread projections from dopamine neurons in the ventral tegmental area (VTA), which are activated by new stimuli or unpredicted rewards, and are believed to provide a reinforcement signal for such learning-related cortical reorganization. In the primary auditory cortex (AI) dopamine release has been observed during auditory learning that remodels the sound-frequency representations. Furthermore, dopamine modulates long-term potentiation, a putative cellular mechanism underlying plasticity. Here we show that stimulating the VTA together with an auditory stimulus of a particular tone increases the cortical area and selectivity of the neural responses to that sound stimulus in AI. Conversely, the AI representations of nearby sound frequencies are selectively decreased. Strong, sharply tuned responses to the paired tones also emerge in a second cortical area, whereas the same stimuli evoke only poor or non-selective responses in this second cortical field in naive animals. In addition, we found that strong long-range coherence of neuronal discharge emerges between AI and this secondary auditory cortical area.  相似文献   

14.
Chronic electrical stimulation of the auditory nerve in patients with profound sensori-neural deafness is becoming increasingly routine. Therefore, it is important to understand more about the long-term consequences of this procedure. Hitherto, structural studies in animals after electrocochlear stimulation have concentrated on the stimulated cochlea. Here we have examined the effects of unilateral extracochlear electrical stimulation on the spiral organ of both the ipsilateral and contralateral ears of the mature guinea pig, and have found alterations in the structure of the outer hair cells and their efferent nerve terminals in the contralateral as well as the ipsilateral cochlea. This is the first evidence for a structural influence of efferent activity on the cochlea. Although the importance of the efferent system, consisting of the crossed and uncrossed olivo-cochlear bundles, is well established in providing central control of the sensory pathways, its exact role in hearing is incompletely understood. However, it is known that the outer hair cells and their efferent innervation are important in their contribution to inner hair cell responses and in modulating the micromechanics of the whole cochlea. These efferent functions now appear to be related to an important part of cochlear morphology, and are also relevant to our understanding of cochlear neurobiology, normal development and the management of hearing disability in both adult and child.  相似文献   

15.
Wang X  Lu T  Snider RK  Liang L 《Nature》2005,435(7040):341-346
It has been well documented that neurons in the auditory cortex of anaesthetized animals generally display transient responses to acoustic stimulation, and typically respond to a brief stimulus with one or fewer action potentials. The number of action potentials evoked by each stimulus usually does not increase with increasing stimulus duration. Such observations have long puzzled researchers across disciplines and raised serious questions regarding the role of the auditory cortex in encoding ongoing acoustic signals. Contrary to these long-held views, here we show that single neurons in both primary (area A1) and lateral belt areas of the auditory cortex of awake marmoset monkeys (Callithrix jacchus) are capable of firing in a sustained manner over a prolonged period of time, especially when they are driven by their preferred stimuli. In contrast, responses become more transient or phasic when auditory cortex neurons respond to non-preferred stimuli. These findings suggest that when the auditory cortex is stimulated by a sound, a particular population of neurons fire maximally throughout the duration of the sound. Responses of other, less optimally driven neurons fade away quickly after stimulus onset. This results in a selective representation of the sound across both neuronal population and time.  相似文献   

16.
Receptive field dynamics in adult primary visual cortex.   总被引:38,自引:0,他引:38  
C D Gilbert  T N Wiesel 《Nature》1992,356(6365):150-152
The adult brain has a remarkable ability to adjust to changes in sensory input. Removal of afferent input to the somatosensory, auditory, motor or visual cortex results in a marked change of cortical topography. Changes in sensory activity can, over a period of months, alter receptive field size and cortical topography. Here we remove visual input by focal binocular retinal lesions and record from the same cortical sites before and within minutes after making the lesion and find immediate striking increases in receptive field size for cortical cells with receptive fields near the edge of the retinal scotoma. After a few months even the cortical areas that were initially silenced by the lesion recover visual activity, representing retinotopic loci surrounding the lesion. At the level of the lateral geniculate nucleus, which provides the visual input to the striate cortex, a large silent region remains. Furthermore, anatomical studies show that the spread of geniculocortical afferents is insufficient to account for the cortical recovery. The results indicate that the topographic reorganization within the cortex was largely due to synaptic changes intrinsic to the cortex, perhaps through the plexus of long-range horizontal connections.  相似文献   

17.
Fiser J  Chiu C  Weliky M 《Nature》2004,431(7008):573-578
During vision, it is believed that neural activity in the primary visual cortex is predominantly driven by sensory input from the environment. However, visual cortical neurons respond to repeated presentations of the same stimulus with a high degree of variability. Although this variability has been considered to be noise owing to random spontaneous activity within the cortex, recent studies show that spontaneous activity has a highly coherent spatio-temporal structure. This raises the possibility that the pattern of this spontaneous activity may shape neural responses during natural viewing conditions to a larger extent than previously thought. Here, we examine the relationship between spontaneous activity and the response of primary visual cortical neurons to dynamic natural-scene and random-noise film images in awake, freely viewing ferrets from the time of eye opening to maturity. The correspondence between evoked neural activity and the structure of the input signal was weak in young animals, but systematically improved with age. This improvement was linked to a shift in the dynamics of spontaneous activity. At all ages including the mature animal, correlations in spontaneous neural firing were only slightly modified by visual stimulation, irrespective of the sensory input. These results suggest that in both the developing and mature visual cortex, sensory evoked neural activity represents the modulation and triggering of ongoing circuit dynamics by input signals, rather than directly reflecting the structure of the input signal itself.  相似文献   

18.
Brainard MS  Doupe AJ 《Nature》2000,404(6779):762-766
Birdsong, like speech, is a learned vocal behaviour that relies greatly on hearing; in both songbirds and humans the removal of auditory feedback by deafening leads to a gradual deterioration of adult vocal production. Here we investigate the neural mechanisms that contribute to the processing of auditory feedback during the maintenance of song in adult zebra finches. We show that the deleterious effects on song production that normally follow deafening can be prevented by a second insult to the nervous system--the lesion of a basal ganglia-forebrain circuit. The results suggest that the removal of auditory feedback leads to the generation of an instructive signal that actively drives non-adaptive changes in song; they also suggest that this instructive signal is generated within (or conveyed through) the basal ganglia-forebrain pathway. Our findings provide evidence that cortical-basal ganglia circuits may participate in the evaluation of sensory feedback during calibration of motor performance, and demonstrate that damage to such circuits can have little effect on previously learned behaviour while conspicuously disrupting the capacity to adaptively modify that behaviour.  相似文献   

19.
Tritsch NX  Yi E  Gale JE  Glowatzki E  Bergles DE 《Nature》2007,450(7166):50-55
Spontaneous activity in the developing auditory system is required for neuronal survival as well as the refinement and maintenance of tonotopic maps in the brain. However, the mechanisms responsible for initiating auditory nerve firing in the absence of sound have not been determined. Here we show that supporting cells in the developing rat cochlea spontaneously release ATP, which causes nearby inner hair cells to depolarize and release glutamate, triggering discrete bursts of action potentials in primary auditory neurons. This endogenous, ATP-mediated signalling synchronizes the output of neighbouring inner hair cells, which may help refine tonotopic maps in the brain. Spontaneous ATP-dependent signalling rapidly subsides after the onset of hearing, thereby preventing this experience-independent activity from interfering with accurate encoding of sound. These data indicate that supporting cells in the organ of Corti initiate electrical activity in auditory nerves before hearing, pointing to an essential role for peripheral, non-sensory cells in the development of central auditory pathways.  相似文献   

20.
Palop JJ  Chin J  Mucke L 《Nature》2006,443(7113):768-773
Patients with Alzheimer's disease or other neurodegenerative disorders show remarkable fluctuations in neurological functions, even during the same day. These fluctuations cannot be caused by sudden loss or gain of nerve cells. Instead, it is likely that they reflect variations in the activity of neural networks and, perhaps, chronic intoxication by abnormal proteins that the brain is temporarily able to overcome. These ideas have far-reaching therapeutic implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号