首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
通过钎料中常用活性材料与被钎陶瓷Si_3N_4之间的物理现象和化学反应,讨论了活性材料所起的作用,即通过活性金属与Si_3N_4陶瓷的化学反应形成反应过渡层而结合,同时活性材料改善了钎料在Si_3N_4陶瓷表面的漫流性能.但因为反应产物与Si_3N_4陶瓷热物理性能相差较大,故活性材料的加入量应限制在一定范围以内。用Ag-Cu-Ti钎料钎接Si_3N_4/钢时,在Si_3N_4/钎料过渡区生成了富TiN层和富Ti_3Si_5层,控制这两个反应结合层的成分和厚度可能是提高钎接接头强度的关键之一。此外在一定范围内增加钎料层厚度时,钎接接头强度有明显提高。  相似文献   

2.
陶瓷的原子结构为强共价键或离子键结合,钎料难以对其表面润湿。本文提出,在辉光放电中使活化金属元素通过溅射沉积和离子渗入在陶瓷表面形成镀层并使钎料活化,从而改善钎料对陶瓷表面的润湿条件。上述过程可与钎焊过程一次装炉完成。与传统的锰-钼法和活性金属钎焊法相比,这一新方法不仅工艺过程简单,生产率高,也无需专用钎料和昂贵的高真空设备。  相似文献   

3.
塑性高温活性钎料的研究   总被引:1,自引:0,他引:1  
根据液相线温度t≥ 110 0℃、冷变形总量ε总 ≥ 40 %要求设计了PdNiTi系、AuPdNiTi系列高温活性钎料 ,对 2种钎料系列的熔化特性、加工性能、润湿性进行了实验研究 .结果表明 :PN - 2 ,APN - 2高温活性钎料具有良好的塑性变形能力 ,对结构陶瓷具有优异的润湿性 ,可直接钎焊结构陶瓷和结构陶瓷 /金属组件  相似文献   

4.
前言传统铜磷钎料因其熔点低、流动性好,具有自钎性以及价格低等优点而广泛应用于电子元器件、印刷电路板、表面组装元器件、微波等通信器件及真空器件等.但传统铜磷钎料由于含磷量高,钎料基体中含有大量的脆性化合物Cu3P,导致钎料在室温呈脆性,使其应用范围受到了限制.利用快速凝固技术制备的非晶态铜磷钎料是一种新型的钎焊材料,其合金内部的原子排列基本上保留液态金属的结构状态,这种结构特点使其具有许多优异的性能,并且可以解决传统铜磷钎料的室温脆性问题[1-2].  相似文献   

5.
氧化物陶瓷与Ag—Cu—Ti钎料的界面反应   总被引:1,自引:0,他引:1  
研究了氧化铝和氧化锆陶瓷真空钎焊时陶瓷与Ag-Cu-Ti钎料合金的界面反应,分析了加热温度(1073-1323K)和保温时间(0-3.6ks)对界面反应的影响规律。扫描电镜和X射线分析结果表明:两种陶瓷均与Ag-Cu-Ti合金发生反应,反应层厚度随着漫画度和时间的增加而增加,对于氧化铝陶瓷,低于1123K时,反应产物为Cu2Ti4O和AlTi;在1173K以上温度时反应产物则为Ti2O,TiO和C  相似文献   

6.
氧化锆陶瓷与不锈钢钎焊的研究   总被引:1,自引:0,他引:1  
采用Ag-Cu-Ti活性钎料,研究了氧化锆陶瓷与1Cr18Ni9Ti不锈钢的钎焊,探讨了软性中间层Cu对接头强度的影响规律,分析了陶瓷与钎料的界面反应,结果表明:陶瓷与钎料间存在一明显反应层,厚度约为4.4μm,反应产物为δ-TiO和γ-AgTi3,并按ZrO2/δ-TiO/δ-TiO+γ-AgTi3/Ag-Cu呈层状过渡分布,中间层Cu对陶瓷与不锈钢钎焊接头强度有很大的影响,当厚度合适时,Cu通  相似文献   

7.
活性金属/陶瓷润湿机理研究   总被引:8,自引:0,他引:8  
基于界面反应热力学研究了活性金属/陶瓷润湿机理。把金属/陶瓷界面反应处理成金属表面相和增强相陶瓷表面相之间的反应,同时考虑表面相、体相的结构和能量的差异,讨论了金属/陶瓷界面反应对润湿性的影响。结果表明,金属/陶瓷界面反应自由能变化和固相陶瓷组成变化引起的界面能变化都是影响润湿性的重要因素,仅在某些情况下,两者之一才成为决定润湿性的关键因素。  相似文献   

8.
压电陶瓷变压器的激光钎焊   总被引:4,自引:0,他引:4  
针对压电陶瓷变压器 ( PECT)侧电极的连接问题 ,提出了激光钎焊的工艺方法 ,采用金属网辅助钎膏钎接片单元工艺 ,很好地解决了多层元件不同性质分割区域表面的连接问题 ,激光钎焊接头全连通率高 ,热影响小 ,质量好。建立了三维多层异质复合结构 PECT的激光钎焊温度场数学模型 ,通过数值模拟的方法计算了 PECT激光钎焊温度场的分布情况 ,取得了比较理想的结果 ,激光钎焊工艺及温度场的分析研究 ,将会推动压电陶瓷变压器的实用化进程 ,对类似问题的解决也会有一定的借鉴意义  相似文献   

9.
本文介绍了陶瓷与不锈钢的一步钎焊法。试验结果指出:Cu-Ti活性纤料具有较好的可钎焊性,润湿性,抗裂性以及价廉等特点。因此,它具有较好的实用价值。  相似文献   

10.
钛和钢广泛应用于“陆海空天”等领域,由于钛与钢的物理化学性能差异,连接界面常形成大量脆性金属间化合物,限制了其广泛应用。在分析钛/钢异种材料焊接的基础上,采用激光钎焊工艺,利用自行研制的AgCuTiZr钎料进行了钛/钢连接实验研究。结果表明,该活性钎料对基体材料润湿性良好,钎焊层组织致密、表面平整;在结合界面处出现了活性元素的扩散,钎焊层中有多物相共存,界面间实现了化学冶金结合;AgCuTiZr活性钎料激光钎焊层具有较高的硬度,达到基体材料的1.5倍,耐磨性与被连接材料45钢/TA2基本一致,抗拉强度达到595 MPa,实现了两种被连接材料的可靠连接。激光热源的显著优点适合于异种金属材料的钎焊连接。  相似文献   

11.
通过碳钢与Si_3N_4陶瓷钎接后残余应力的分析,论述了应力缓和材料的选择原则。对各类材料热物理性能进行了分析比较,选出一些能实际应用的应力缓和材料,通过钎焊实验,证实采用适当的接头形式能有效地防止钎焊裂纹的出现,提高了钎接接头的强度。  相似文献   

12.
自韧化氮化硅陶瓷研究   总被引:4,自引:0,他引:4  
对热压烧结自韧化Si3N4陶瓷的工艺参数诸如助烧剂量,烧结时间和温度等与材料显微组织,相组成及力学性能间的关系进行了研究。在致密化前提下且烧剂量较少时,有利于材料显微组织的均匀化和力学性能的提高。  相似文献   

13.
通过对Si3N4/钢多组针焊实验的比较分析,讨论了影响接头强度的主要因素,提出了在本实验条件下,几个重要工艺参数的理想取值范围.并研究了接头型式对接头强度的影响.  相似文献   

14.
燃烧合成氮化硅的动力学分析   总被引:3,自引:0,他引:3  
用2种方法研究了燃烧合成氮化硅的动力学,Si3N4的燃烧波蔓延速度为0.097-0.13cm.s^-1,燃烧区宽度为0.54cm,用燃烧波速法测得其激活能为75.4kJ/mol确定了不同燃烧时间的反应转化率和转化程度,并据此计算出燃烧合成Si3N4的激活能烽54.3kJ/mol,2种方法计算的激活能数值相差约30%,说明燃烧合成氮化硅过程存在明显的后燃烧现象,随稀释剂质量分数的增加,最高燃烧温度降  相似文献   

15.
纳米尺寸非晶氮化硅结构模型研究   总被引:1,自引:0,他引:1  
根据晶态和非晶态氮化硅原子的相关性结构特征,构造出了正四面体N结构和平面三角形Si结构相互嵌套的基本结构单元,模拟出了纳米量级非晶氮化硅的结构模型,其主要结构参数与实验吻合,这种模型可进一步用于非晶和纳米非晶氮化硅材料的结构和性能研究之中.  相似文献   

16.
为了获得性能优良的Si3N4-SiC棚板,就棚板制造过程中的配料及成型工艺等问题进行了实验研究,探讨了提高Si3N4-SiC棚板坯体密度的最佳途径。实验表明:振动成型时,振动时间和振动压力要匹配适当,才能得到最佳的坯体密度。工艺调整适当后,Si3N4-SiC棚板实际使用寿命可达500次以上。  相似文献   

17.
采用磁控反应溅射工艺制备了Si3N4/TiN陶瓷纳米多层膜,运用X射线衍射、透射电镜和显微硬度仪等对纳米多层膜的微结构、应力状态和硬度进行测试.研究结果表明,Si3N4/TiN多层膜中,Si3N4层为非晶态,TiN层为晶态.Si3N4/TiN多层膜的显微硬度既受调制周期Λ的影响,同时又与调制比有关.当调制比lSi3N4/lTiN=3和调制周期Λ=12.0nm左右时,多层膜的显微硬度达到最大值,其数值比用混合法则计算的值高40%以上.根据实验结果,还提出了该体系出现超硬效应的机制  相似文献   

18.
用连续波CO2激光对氮化硅陶瓷打孔的实验研究   总被引:1,自引:0,他引:1  
报导用连续波CO2激光加工机对氮化硅陶瓷的激光打孔试验,获得了深径比达18.75的结果。  相似文献   

19.
Y-TZP和氮气压力对GPSSi_3N_4性能的影响   总被引:1,自引:0,他引:1  
本文研究了Y-TZP(3mol%Y2O3)和氮气压力对GPSSi3N4陶瓷材料的烧结性能和力学性能、相组成及微观结构的影响,添加5wt%、10wt%、15wt%、20wt%Y-TZP的氨化硅复合材料在1770~1800℃,氮气压力分别为1MPa、2MPa、3MPa下烧成,获得相对密度>95%的烧结体。实验结果表明:添加<10wt%的Y-TZP及增大氮气压力有利于改善氰化硅陶瓷材料的烧结性能;Y-TZP可提高Si3N4基体的断裂韧性,添加15wt%TZP的Si3N4材料断裂韧性可达8.33MPam1/2,与基体相比提高30%,微裂纹增韧和第二相粒子增韧为主要增韧机理.  相似文献   

20.
β-C_3N_4是一种硬度预计可超过金则石的新型超硬材料。本文综述了β-C_3N_4的结构特性和目前国际上β-C_3N_4的研究进展情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号