首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Hulot G  Eymin C  Langlais B  Mandea M  Olsen N 《Nature》2002,416(6881):620-623
The 'geodynamo' in the Earth's liquid outer core produces a magnetic field that dominates the large and medium length scales of the magnetic field observed at the Earth's surface. Here we use data from the currently operating Danish Oersted satellite, and from the US Magsat satellite that operated in 1979/80, to identify and interpret variations in the magnetic field over the past 20 years, down to length scales previously inaccessible. Projected down to the surface of the Earth's core, we found these variations to be small below the Pacific Ocean, and large at polar latitudes and in a region centred below southern Africa. The flow pattern at the surface of the core that we calculate to account for these changes is characterized by a westward flow concentrated in retrograde polar vortices and an asymmetric ring where prograde vortices are correlated with highs (and retrograde vortices with lows) in the historical (400-year average) magnetic field. This pattern is analogous to those seen in a large class of numerical dynamo simulations, except for its longitudinal asymmetry. If this asymmetric state was reached often in the past, it might account for several persistent patterns observed in the palaeomagnetic field. We postulate that it might also be a state in which the geodynamo operates before reversing.  相似文献   

2.
Buffett BA 《Nature》2010,468(7326):952-954
Magnetic fields at the Earth's surface represent only a fraction of the field inside the core. The strength and structure of the internal field are poorly known, yet the details are important for our understanding of the geodynamo. Here I obtain an indirect estimate for the field strength from measurements of tidal dissipation. Tidally driven flow in the Earth's liquid core develops internal shear layers, which distort the internal magnetic field and generate electric currents. Ohmic losses damp the tidal motions and produce detectable signatures in the Earth's nutations. Previously reported evidence of anomalous dissipation in nutations can be explained with a core-averaged field of 2.5?mT, eliminating the need for high fluid viscosity or a stronger magnetic field at the inner-core boundary. Estimates for the internal field constrain the power required for the geodynamo.  相似文献   

3.
Christensen UR  Tilgner A 《Nature》2004,429(6988):169-171
In the Earth's fluid outer core, a dynamo process converts thermal and gravitational energy into magnetic energy. The power needed to sustain the geomagnetic field is set by the ohmic losses (dissipation due to electrical resistance). Recent estimates of ohmic losses cover a wide range, from 0.1 to 3.5 TW, or roughly 0.3-10% of the Earth's surface heat flow. The energy requirement of the dynamo puts constraints on the thermal budget and evolution of the core through Earth's history. Here we use a set of numerical dynamo models to derive scaling relations between the core's characteristic dissipation time and the core's magnetic and hydrodynamic Reynolds numbers--dimensionless numbers that measure the ratio of advective transport to magnetic and viscous diffusion, respectively. The ohmic dissipation of the Karlsruhe dynamo experiment supports a simple dependence on the magnetic Reynolds number alone, indicating that flow turbulence in the experiment and in the Earth's core has little influence on its characteristic dissipation time. We use these results to predict moderate ohmic dissipation in the range of 0.2-0.5 TW, which removes the need for strong radioactive heating in the core and allows the age of the solid inner core to exceed 2.5 billion years.  相似文献   

4.
5.
用矢量合成法测量流动控制结晶器的磁场   总被引:1,自引:0,他引:1  
由霍尔效应基本关系式,磁感应强度B可以分解为坐标轴向量Bx和By·利用这个原理和传统的磁场测试仪器CT3型特斯拉计,开发出一种新型的磁场测试方法矢量合成法·与传统的磁场测试方法相比,该法不仅能测试出磁场磁感应强度的大小,而且能同时测出其方向·测试结果表明,用该法所测得的流动控制结晶器磁场分布特性,很好地描绘了磁感应强度的实际分布情况·该法适用于测试恒稳磁场·  相似文献   

6.
The origin of lunar magnetic anomalies remains unresolved after their discovery more than four decades ago. A commonly invoked hypothesis is that the Moon might once have possessed a thermally driven core dynamo, but this theory is problematical given the small size of the core and the required surface magnetic field strengths. An alternative hypothesis is that impact events might have amplified ambient fields near the antipodes of the largest basins, but many magnetic anomalies exist that are not associated with basin antipodes. Here we propose a new model for magnetic field generation, in which dynamo action comes from impact-induced changes in the Moon's rotation rate. Basin-forming impact events are energetic enough to have unlocked the Moon from synchronous rotation, and we demonstrate that the subsequent large-scale fluid flows in the core, excited by the tidal distortion of the core-mantle boundary, could have powered a lunar dynamo. Predicted surface magnetic field strengths are on the order of several microteslas, consistent with palaeomagnetic measurements, and the duration of these fields is sufficient to explain the central magnetic anomalies associated with several large impact basins.  相似文献   

7.
Singer BS  Hoffman KA  Coe RS  Brown LL  Jicha BR  Pringle MS  Chauvin A 《Nature》2005,434(7033):633-636
Reversals of the Earth's magnetic field reflect changes in the geodynamo--flow within the outer core--that generates the field. Constraining core processes or mantle properties that induce or modulate reversals requires knowing the timing and morphology of field changes that precede and accompany these reversals. But the short duration of transitional field states and fragmentary nature of even the best palaeomagnetic records make it difficult to provide a timeline for the reversal process. 40Ar/39Ar dating of lavas on Tahiti, long thought to record the primary part of the most recent 'Matuyama-Brunhes' reversal, gives an age of 795 +/- 7 kyr, indistinguishable from that of lavas in Chile and La Palma that record a transition in the Earth's magnetic field, but older than the accepted age for the reversal. Only the 'transitional' lavas on Maui and one from La Palma (dated at 776 +/- 2 kyr), agree with the astronomical age for the reversal. Here we propose that the older lavas record the onset of a geodynamo process, which only on occasion would result in polarity change. This initial instability, associated with the first of two decreases in field intensity, began approximately 18 kyr before the actual polarity switch. These data support the claim that complete reversals require a significant period for magnetic flux to escape from the solid inner core and sufficiently weaken its stabilizing effect.  相似文献   

8.
Aubert J  Amit H  Hulot G  Olson P 《Nature》2008,454(7205):758-761
Seismic waves sampling the top 100 km of the Earth's inner core reveal that the eastern hemisphere (40 degrees E-180 degrees E) is seismically faster, more isotropic and more attenuating than the western hemisphere. The origin of this hemispherical dichotomy is a challenging problem for our understanding of the Earth as a system of dynamically coupled layers. Previously, laboratory experiments have established that thermal control from the lower mantle can drastically affect fluid flow in the outer core, which in turn can induce textural heterogeneity on the inner core solidification front. The resulting texture should be consistent with other expected manifestations of thermal mantle control on the geodynamo, specifically magnetic flux concentrations in the time-average palaeomagnetic field over the past 5 Myr, and preferred eddy locations in flows imaged below the core-mantle boundary by the analysis of historical geomagnetic secular variation. Here we show that a single model of thermochemical convection and dynamo action can account for all these effects by producing a large-scale, long-term outer core flow that couples the heterogeneity of the inner core with that of the lower mantle. The main feature of this thermochemical 'wind' is a cyclonic circulation below Asia, which concentrates magnetic field on the core-mantle boundary at the observed location and locally agrees with core flow images. This wind also causes anomalously high rates of light element release in the eastern hemisphere of the inner core boundary, suggesting that lateral seismic anomalies at the top of the inner core result from mantle-induced variations in its freezing rate.  相似文献   

9.
B A Buffett  H R Wenk 《Nature》2001,413(6851):60-63
Elastic anisotropy in the Earth's inner core has been attributed to a preferred lattice orientation, which may be acquired during solidification of the inner core or developed subsequent to solidification as a result of plastic deformation. But solidification texturing alone cannot explain the observed depth dependence of anisotropy, and previous suggestions for possible deformation processes have all relied on radial flow, which is inhibited by thermal and chemical stratification. Here we investigate the development of anisotropy as the inner core deforms plastically under the influence of electromagnetic (Maxwell) shear stresses. We estimate the flow caused by a representative magnetic field using polycrystal plasticity simulations for epsilon-iron, where the imposed deformation is accommodated by basal and prismatic slip. We find that individual grains in an initially random polycrystal become preferentially oriented with their c axes parallel to the equatorial plane. This pattern is accentuated if deformation is accompanied by recrystallization. Using the single-crystal elastic properties of epsilon-iron at core pressure and temperature, we average over the simulated orientation distribution to obtain a pattern of elastic anisotropy which is similar to that observed seismologically.  相似文献   

10.
Bloxham J  Zatman S  Dumberry M 《Nature》2002,420(6911):65-68
Geomagnetic jerks, which in the second half of the twentieth century occurred in 1969 (refs 1, 2), 1978 (refs 3, 4), 1991 (ref. 5) and 1999 (ref. 6), are abrupt changes in the second time-derivative (secular acceleration) of the Earth's magnetic field. Jerks separate periods of almost steady secular acceleration, so that the first time-derivative (secular variation) appears as a series of straight-line segments separated by geomagnetic jerks. The fact that they represent a reorganization of the secular variation implies that they are of internal origin (as has been established through spherical harmonic analysis), and their short timescale implies that they are due to a change in the fluid flow at the surface of the Earth's core (as has also been established through mapping the time-varying flow at the core surface). However, little is understood of their physical origin. Here we show that geomagnetic jerks can be explained by the combination of a steady flow and a simple time-varying, axisymmetric, equatorially symmetric, toroidal zonal flow. Such a flow is consistent with torsional oscillations in the Earth's core, which are simple oscillatory flows in the core that are expected on theoretical grounds, and observed in both core flow models and numerical dynamo models.  相似文献   

11.
采用POM模式对2005年西北太平洋西边界流系源区进行了数值模拟.针对该海区海表热通量与POM模式匹配困难的问题,在模拟过程中,分别采用由同化AMSR卫星资料插值得到的日平均海表温度场以及由NCEP资料得到的海表净热通量与长、短波辐射通量两种方案来进行海表热强迫.通过与SODA资料的分析结果对比,POM模式模拟结果较好地显示出北赤道流,黑潮源区及棉兰老海流的基本特征,两处断面流速与实际探测资料较为吻合;高度场模拟结果与实况较为一致,但0.9m水位高度线范围呈缩小-放大-缩小-放大的季节性震荡与实况中维持稳定存在一定差异;海温模拟结果与月平均的SODA资料总体一致,但在春夏两季温度略高.  相似文献   

12.
文章通过对流体的速度场、电场和磁场中通量的解析,总结出了任意的矢量场通量的定义、一般表达式及一般计算方法。  相似文献   

13.
Christensen UR 《Nature》2006,444(7122):1056-1058
Mercury has a global magnetic field of internal origin and it is thought that a dynamo operating in the fluid part of Mercury's large iron core is the most probable cause. However, the low intensity of Mercury's magnetic field--about 1% the strength of the Earth's field--cannot be reconciled with an Earth-like dynamo. With the common assumption that Coriolis and Lorentz forces balance in planetary dynamos, a field thirty times stronger is expected. Here I present a numerical model of a dynamo driven by thermo-compositional convection associated with inner core solidification. The thermal gradient at the core-mantle boundary is subadiabatic, and hence the outer region of the liquid core is stably stratified with the dynamo operating only at depth, where a strong field is generated. Because of the planet's slow rotation the resulting magnetic field is dominated by small-scale components that fluctuate rapidly with time. The dynamo field diffuses through the stable conducting region, where rapidly varying parts are strongly attenuated by the skin effect, while the slowly varying dipole and quadrupole components pass to some degree. The model explains the observed structure and strength of Mercury's surface magnetic field and makes predictions that are testable with space missions both presently flying and planned.  相似文献   

14.
Analysis of the International Geomagnetic Reference Field (IGRF) 1900-2000 shows that the Earth's main magnetic field has changed dramatically during the 20th century: its dipole moment has decreased by 6.5% since 1900, the strengths of its quadrupole and octupole have increased by 95% and 74%, respectively, four major planetary-scale magnetic anomalies on the Earth's surface have enhanced by 21%-56%, and the magnetic center has shifted 200 km towards the Pacific Ocean. These time-variation features are similar to the behavior before a geomagnetic polarity reversal.  相似文献   

15.
Baker DN  Kanekal SG  Li X  Monk SP  Goldstein J  Burch JL 《Nature》2004,432(7019):878-881
The Earth's radiation belts--also known as the Van Allen belts--contain high-energy electrons trapped on magnetic field lines. The centre of the outer belt is usually 20,000-25,000 km from Earth. The region between the belts is normally devoid of particles, and is accordingly favoured as a location for spacecraft operation because of the benign environment. Here we report that the outer Van Allen belt was compressed dramatically by a solar storm known as the 'Hallowe'en storm' of 2003. From 1 to 10 November, the outer belt had its centre only approximately 10,000 km from Earth's equatorial surface, and the plasmasphere was similarly displaced inwards. The region between the belts became the location of high particle radiation intensity. This remarkable deformation of the entire magnetosphere implies surprisingly powerful acceleration and loss processes deep within the magnetosphere.  相似文献   

16.
An intense stratospheric jet on Jupiter   总被引:1,自引:0,他引:1  
The Earth's equatorial stratosphere shows oscillations in which the east-west winds reverse direction and the temperatures change cyclically with a period of about two years. This phenomenon, called the quasi-biennial oscillation, also affects the dynamics of the mid- and high-latitude stratosphere and weather in the lower atmosphere. Ground-based observations have suggested that similar temperature oscillations (with a 4-5-yr cycle) occur on Jupiter, but these data suffer from poor vertical resolution and Jupiter's stratospheric wind velocities have not yet been determined. Here we report maps of temperatures and winds with high spatial resolution, obtained from spacecraft measurements of infrared spectra of Jupiter's stratosphere. We find an intense, high-altitude equatorial jet with a speed of approximately 140 m s(-1), whose spatial structure resembles that of a quasi-quadrennial oscillation. Wave activity in the stratosphere also appears analogous to that occurring on Earth. A strong interaction between Jupiter and its plasma environment produces hot spots in its upper atmosphere and stratosphere near its poles, and the temperature maps define the penetration of the hot spots into the stratosphere.  相似文献   

17.
Wave acceleration of electrons in the Van Allen radiation belts   总被引:1,自引:0,他引:1  
The Van Allen radiation belts are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth's magnetic field. Their properties vary according to solar activity and they represent a hazard to satellites and humans in space. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiation belt was depleted and then re-formed closer to the Earth, that the long established theory of acceleration by radial diffusion is inadequate; the electrons are accelerated more effectively by electromagnetic waves at frequencies of a few kilohertz. Wave acceleration can increase the electron flux by more than three orders of magnitude over the observed timescale of one to two days, more than sufficient to explain the new radiation belt. Wave acceleration could also be important for Jupiter, Saturn and other astrophysical objects with magnetic fields.  相似文献   

18.
Solanki SK  Lagg A  Woch J  Krupp N  Collados M 《Nature》2003,425(6959):692-695
Flares and X-ray jets on the Sun arise in active regions where magnetic flux emerges from the solar interior amd interacts with the ambient magnetic field. The interactions are believed to occur in electric current sheets separating regions of opposite magnetic polarity. The current sheets located in the corona or upper chromosphere have long been thought to act as an important source of coronal heating, requiring their location in the corona or upper chromosphere. The dynamics and energetics of these sheets are governed by a complex magnetic field structure that, until now, has been difficult to measure. Here we report the determination of the full magnetic vector in an interaction region near the base of the solar corona. The observations reveal two magnetic features that characterize young active regions on the Sun: a set of rising magnetic loops and a tangential discontinuity of the magnetic field direction, the latter being the observational signature of an electric current sheet. This provides strong support for coronal heating models based on the dissipation of magnetic energy at current sheets.  相似文献   

19.
Leask MJ 《Nature》1977,267(5607):144-145
Migratory birds and homing pigeons can apparently obtain directional information from the Earth's magnetic field. The effect is difficult to detect, and discussion of the possible process of magnetic field detection by birds seems so far to have foundered on the simple fact that the orientational effect of the Earth's magnetic field on a single electron spin associated with a molecule of animal tissue would be of the order 10(-8) eV--almost certainly too small to be detectable biologically. Here I direct attention to a process which would overcome this basic problem, and which also seems to provide an explanation of all the main features of published data. It is a mechanism in principle only, however, and is discussed here in no more detail than is necessary to clarify the basic ideas and to provide a basis for further investigation.  相似文献   

20.
Vidale JE  Dodge DA  Earle PS 《Nature》2000,405(6785):445-448
The finding that the Earth's inner core might be rotating faster than the mantle has important implications for our understanding of core processes, including the generation of the Earth's magnetic field. But the reported signal is subtle--a change of about 0.01 s per year in the separation of two seismic waves with differing paths through the core. Subsequent studies of such data have generally supported the conclusion that differential rotation exists, but the difficulty of accurately locating historic earthquakes and possible biases induced by strong lateral variations in structure near the core-mantle boundary have raised doubt regarding the proposed inner-core motion. Also, a study of free oscillations constrained the motion to be relatively small compared to previous estimates and it has been proposed that the interaction of inner-core boundary topography and mantle heterogeneity might lock the inner core to the mantle. The recent detection of seismic waves scattered in the inner core suggests a simple test of inner-core motion. Here we compare scattered waves recorded in Montana, USA, from two closely located nuclear tests at Novaya Zemlya, USSR, in 1971 and 1974. The data show small but coherent changes in scattering which point toward an inner-core differential rotation rate of 0.15 degrees per year--consistent with constraints imposed by the free-oscillation data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号