首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对桥梁深水高桩承台基础—水体耦合动力问题,首先建立了深水高桩承台基础简化数值分析模型,针对桩身,给出了基于水下桩基尺度的桩身动水附加质量解析算法,并计人群桩效应的影响;针对承台,提出了动水附加质量简化有限元计算方法,依靠基于势流体单元的合理的流体动力学数值表达,即考虑了承台真实几何尺寸,又兼顾了其振动周期对承台动水效应的影响,从而得到了地震作用下高桩承台基础地震动水效应数值解析混合算法.以四桩高桩承台试验模型为研究对象,利用该方法进行模态及时程分析,通过与试验及其他数值、解析结果比较,表明本算法与试验及完全数值方法吻合良好,其计算精度与计算效率得到有效改善.该研究对深水高桩承台基础的抗震分析和设计具有参考价值.  相似文献   

2.
桩基础承台水平附加质量分析   总被引:5,自引:0,他引:5  
基于速度势理论 ,研究了水中桩基圆形承台作水平简谐运动时 ,承台侧面的动水压力 .提出了一个有效的计算承台侧面动水压力的半解析半数值方法 ,进而得到附加质量系数 .该方法不仅能考虑自由表面波对动水压力的影响 ,而且还适用于位于任意水深处的承台 .分析表明 ,水面附近的承台作低频简谐运动时 ,承台上的动水压力受表面波影响较大 ;而承台作高频简谐运动时 ,受表面波影响很小 .此外 ,采用修正Morison方程常规附加质量系数 ,会夸大水对承台的作用  相似文献   

3.
地震动水压力对深水桥墩的影响   总被引:12,自引:0,他引:12  
在Morison方程的基础上,用附加质量考虑水的影响,采用有限元方法来分析深水桥墩的地震响应.通过对实例的分析,认为地震动水压力对深水桥墩的影响是显著的,动水压力的作用使桥墩的地震响应最大值增大了近50%,并得出了影响动水压力的主要因素.同时与我国现行抗震规范的计算结果进行了比较分析,认为在抗震设计中是否考虑地震动水压力对桥墩的影响采用相对水深来决定更为合理.  相似文献   

4.
深水高桩基础桥梁地震水动力效应分析   总被引:6,自引:0,他引:6  
摘要:针对我国深水桥梁建设中广泛采用大型群桩基础的现实情况,为满足深水桥梁抗震分析和抗震设计的需求,进行了深水高桩基础桥梁地震动水力效应的研究。首先将深水高桩基础的承台理想化为一个浸入水中的截断圆柱体,建立了截断圆柱体的地震动水压等效附加质量与等效附加阻尼矩阵的解析计算方法;其次提出了非圆柱体等效为圆柱体的近似处理方法;第三在频域建立了深水高桩基础桥梁考虑动水力效应的地震振动方程,并完成了有限元程序编制;最后对一座跨海峡大桥进行了地震反应计算,结果表明地震动水力效应对深水高桩基础桥梁的地震反应有重要影响,因计算的反应量不同,可能使地震反应增大,也可能使地震反应减小,其影响程度在抗震分析与设计中应当加以考虑。  相似文献   

5.
动水压力对深水桥梁性能设计的影响   总被引:1,自引:0,他引:1  
通过一个深水桥墩实例对中国与日本桥梁抗震规范的地震动水压力计算方法进行比较研究,分析规范关于动水压力计算的异同点,计算表明两者结果相差较大. 对桥墩的动水压力进行数值模拟计算,考察动水压力沿深水桥梁高程的分布. 为研究动水压力对桥梁整体结构动力特性的影响,以主跨260 m的牛根大桥为背景建立有限元计算模型,采用附加质量法进行计算. 结果表明,附加质量法求得的位移和弯矩比不考虑动水作用的情况有较大增幅,也表明动水压力对桥梁的性能有较大的影响. 在深水桥梁的性能设计理论与应用领域中,水与桥墩的相互作用问题有必要进行进一步的研究.  相似文献   

6.
以某跨海连续梁桥为例,研究动水压力对拉索减震支座减隔震体系下深水桥梁地震响应的影响,分析拉索减震支座在深水区连续梁桥中的适用性。首先建立考虑动水压力下的深水桥梁地震响应分析方法,然后针对拉索减震支座减隔震体系对该桥进行动力响应分析,并与摩擦摆减隔震体系进行对比。结果表明:动水压力增大了深水桥梁的地震内力和位移响应;拉索减震支座减隔震体系下,动水压力对地震响应的影响程度明显小于摩擦摆减隔震体系,体现了拉索减震支座在深水桥梁抗震设计中的优越性。  相似文献   

7.
采用非线性p-y弹簧模型模拟土体与桩基的相互作用,并通过有限元建模研究了土层对基岩地震动的滤波效应及土体非线性对高墩桥梁地震响应的影响。分析结果表明,若采用合适的地震动输入,在地震动强度较小时,线弹性6弹簧模型能够对高墩的剪力及弯矩响应进行较为精确的估计;但在强震作用下,则会显著高估墩身剪力需求。并且不论采用何种地震输入,6弹簧模型都会极大地低估承台位移响应,对桩基础损伤状态得到偏于不安全的估计。  相似文献   

8.
采用ABAQUS中的声学单元模拟库水,探讨库水可压缩性对重力坝动力特性和地震响应的影响.首先建立了刚性直墙和柔性墙模型,采用声学单元模拟库水可压缩性,将动水压力结果与相关文献进行对比,验证了库水单元模型的正确性.然后以Koyna大坝为例建立了坝体-库水-地基有限元模型,分析了库水可压缩性对于坝体自振频率和关键部位地震响应的影响,并对不同高度大坝和不同卓越频率的地震荷载对坝体关键部位的动水压力进行了探究.结果表明:可压缩库水模型能够降低坝体自振频率,与忽略库水可压缩性时相比降低3.1%.考虑库水可压缩性时,会增大坝顶、上游坝面中点处水平位移响应,增大下游坝面折点、坝踵处主拉应力响应.对于不同高度大坝,可压缩库水模型相较于不可压缩库水模型增大了坝面动水压力,且动水压力峰值随着坝高的增加逐渐增大.在地震卓越频率与可压缩库水模型自振频率相接近时,对动水压力有较大的影响.  相似文献   

9.
摩擦摆支座因其稳定的力学特性而广泛应用于中小跨径的桥梁隔震.文中首先根据FPS力学模型的特点,剥离出摩擦力项并给出了考虑动压力对回复力中摩擦力项影响的有限元实现,以较准确模拟FPS的力学特性.以单自由度模型为例,研究了动压力和摩擦限值对其动力响应的影响.其次以四跨连续梁桥为例,建立2种不同FPS支座布置参数的平面动力分析有限元模型,研究了同时考虑竖向和水平地震作用时,结构时域动力响应特点.文中研究表明:考虑动压力影响后,FPS支座的滞回环不再是标准的平行四边形,呈现出一定的波动性;采用FPS隔震连续梁桥在考虑动压力对摩擦力项影响后,可避免墩底反力高估.  相似文献   

10.
在地震激励下动水压力对沉管隧道的影响   总被引:1,自引:0,他引:1  
考虑粘-弹性人工边界、土壤的非线性及流-固耦合作用,建立了沉管隧道-土壤-流体(水)相互作用的力学模型,采用Newmark算法,对沉管隧道在地震激励下的响应进行分析.分析了不同地震激励以及不同水深条件下沉管隧道结构的应力变化.研究了动水压力对沉管隧道的影响.结果表明:在只考虑水平方向地震激励时,动水压力对沉管隧道的作用影响较小,在分析时可以忽略动水压力的作用;在含有竖直分量的地震激励下,动水压力对沉管隧道的应力有较大影响,在分析沉管隧道的地震响应时,应该考虑竖向地震的作用;由于动水压力的作用,沉管隧道的最大应力位置会发生变化.结果可用于运行条件下沉管隧道的动力特性以及损伤产生发展机理的研究.  相似文献   

11.
目的研究冲刷作用对大跨度自锚式悬索桥桥塔地震响应的影响,为此类桥梁冲刷条件下抗震设计提供参考.方法采用考虑几何非线性的全桥有限元模型,并应用m法模拟土对桩基的约束刚度,分析不同基础冲刷深度条件对基础刚度和桥梁整体动力特性,以及对高耸桥塔地震响应的影响.结果冲刷效应通过减小土对桩基的约束,使桥塔基础刚度明显减小,但桥梁竖向和纵向基频不受影响,高阶振型及其地震效应的变化控制了结构的某些地震响应;不同冲刷深度下,桥塔关键截面-塔底截面纵桥向内力会出现明显峰值,而塔顶位移及横桥向内力效应呈现不同的规律.结论对于大跨度自锚式悬索桥高耸桥塔结构,最不利地震荷载效应并不完全发生在冲刷深度最大时,抗震设计需要考虑地震下多目标效应的多级冲刷的精细化处理方法.  相似文献   

12.
与对普通桥梁的抗震性能研究不同,对水管桥研究时需考虑动水压力的影响,以附加质量的形式模拟动水压力对水管桥动力特性和地震响应的影响.阻尼是结构动力响应分析中的重要参数,针对阻尼模型的合理选择进行讨论.水管桥自振特性复杂,对横桥向分别采用Rayleigh阻尼模型、分块Rayleigh阻尼模型进行动力计算;对顺桥向采用Rayleigh阻尼模型进行动力计算.两个方向均以振型叠加法所得结果作为精确解,评价了各阻尼模型的合理性.结果表明:分块Rayleigh阻尼模型更能合理地模拟结构横桥向振动的阻尼特性,而顺桥向按Rayleigh阻尼计算就能得到较好的精度.  相似文献   

13.
波浪作用下的海床响应及其对建筑物稳定性的影响   总被引:4,自引:0,他引:4  
应用动弹性固结有限元法,求解了随机波浪作用下饱和海床土体中的孔隙水压力、有效应力和位移的瞬态响应,并对海洋建筑物的稳定性进行分析。建立的有限元计算模型中采用了动弹性固结理论和线性渗流理论,海床可为具有任意边界条件的分层分块弹性多孔介质;利用简单条分法对海床和建筑物进行稳定性分析,在滑动面上考虑波浪附加应力的影响。孔隙水压力响应的理论计算结果与模型实验的量测值吻合的较好。计算表明,近海工程中考虑海床土体受到的波浪附加应力时,海床和建筑物的整体稳定安全系数将降低,降低幅度主要与海床面上的波浪压力、海床的渗透性有关。  相似文献   

14.
考虑黏弹性人工边界与流固耦合作用,建立了衬砌结构-土-海水相互作用的力学模型,基于Newmark算法,利用ANSYS有限元软件分析了在不同地震激励和埋深条件下动水压力的影响机理与隧道衬砌的振动响应规律.计算结果表明:在含有竖向分量的地震激励下,动水压力对浅埋海底隧道的内力影响较大,分析时不容忽视;当隧道埋深超过一定值后,结构地震反应变化微小可忽略.同时,针对圆形海底隧道进行的有限元计算结果可为海底隧道的工程抗震设计提供参考.  相似文献   

15.
对5种不同高度的重力坝分别采用流固耦合模型与附加质量模型进行了坝体-库水系统相互作用的时域地震动分析.将这两种模型计算所得动水压力结果与Westergaard公式解析解相比较可知,约70m高的中低重力坝采用Westergaard公式计算动水压力就能满足工程实际的要求;对于160m以上的中高重力坝,采用流固耦合模型计算库水作用及坝体动力响应较为接近现实情况.从坝体频率、位移、峰值加速度(PGA)三个方面的结果可以看出,附加质量模型模拟地震条件下库水对坝体作用较流固耦合模型有一定的夸大,对中高坝而言更为显著.地基对200m级高坝库水作用的影响非常明显,在计算坝体与库水相互作用时地基作用不可忽略;对于70m高的中低坝,地基作用可以不用考虑.  相似文献   

16.
为分析地震作用下框架锚杆支护结构的动力响应,以某中跨立柱单元为对象,考虑边坡加速度放大效应对支护结构上动土压力的影响,将立柱简化为抗弯刚度均匀的竖向杆件,依据锚杆工作机理将自由段简化为线弹簧,考虑土体阻尼影响将锚固段简化为线弹簧与牛顿粘壶,支护结构坡脚处简化为固端约束,进而建立支护结构动力响应简化模型.运用力法与图乘法对支护结构动力响应进行求解,建立支护结构动弯矩和动位移与坡高之间的关系.模型计算方法与Geo-Studio有限元软件结果对比,验证模型的合理性与可行性,为此类工程设计与地震作用下支护结构动力研究提供相应的参考.  相似文献   

17.
曾勇 《工程与建设》2016,(3):352-354
采用嵌固法、m法和 p - y曲线法模拟桩‐土效应,对比分析不同简化分析方法对桥梁地震响应的影响。研究表明,不论采用什么简化分析模型模拟桩‐土‐桥梁结构相互作用,是否考虑桩基的材料非线性,都会对桥梁结构的地震响应预计产生显著影响;采用 m法计算得到地震响应最大,嵌固的方法次之,p - y曲线法最小。嵌固法和 p- y曲线法的计算结果较为接近,尤其是考虑桩基材料非线性后,两者计算结果会更加接近。  相似文献   

18.
以深水桥梁的两座桥墩为研究对象,考虑混凝土的非线性力学行为,以可有效计入墩-水流固耦合效应的势流体完全数值法为基础建立势流体模型,并引入动水压力简化算法建立附加质量模型.讨论了墩周水域范围及势流体单元尺寸的合理取值,验证了简化算法在深水桥墩非线性动力分析中的有效性.对比讨论了弹性模型、非线性模型动力响应的差别,对比了近、远场地震下深水桥墩非线性动力响应的差异及分布特征.研究结果表明:当地震动峰值加速度(P_(PGA))较小时,桥墩非线性模型与弹性模型的动力响应相一致;随P_(PGA)的增大,非线性模型的墩底弯矩、剪力均小于弹性模型,说明强震下桥墩会进入开裂甚至弹塑性状态,其力学行为与弹性模型差别明显,应该考虑其在强震下潜在的非线性动力行为.近场地震下,深水桥墩的动力响应明显高于远场,墩底弯矩均值分别比远场地震下大80.4%和34.4%,剪力均值分别大23.7%和28.9%,表明近场地震下桥墩会进入更强的非线性状态,对近断层区深水桥梁的抗震设计提出了更高的要求.  相似文献   

19.
针对斜交空心板桥,运用有限元方法分析地震作用下桥梁的地震响应特性,并对其抗震性能进行评价,对不满足要求的地震响应提出应对措施。结果表明:在地震作用下,斜交桥的地震响应特性较直桥更为复杂,靠近承台的墩柱和桩基的地震响应较中间墩柱大,可达到中间墩柱地震响应的1.1~1.6倍;盖梁内部产生轴向压力和拉力;主梁扭转效应显著,支座受力分布不均匀,部分支座发生脱空和超压,处于斜桥锐角最边缘处的支座最易脱空,从锐角至钝角方向压力逐渐增大。在地震作用下,墩柱受剪、支座受剪、受压及变形均可能不满足承载能力的要求,并且支座会发生滑移。在设计时,需考虑盖梁轴力其对受弯及受剪承载力的影响;需选取适宜的支座型号,使其满足承载能力和变形的要求;对支座脱空问题,可通过调整支座竖向刚度予以控制,或设置抗拉支座;对支座滑移问题,可通过采取防落梁措施予以解决,横桥向可设置抗震挡块,纵桥向可设置纵向挡块、限位锚栓或拉索式连梁装置。  相似文献   

20.
以一座典型的四跨钢筋混凝土连续桥梁为例,建立三个液化场地桩-土-桥梁体系平面应变有限元模型,考虑饱和土体中孔隙水与土颗粒的动力耦合效应,探究碎石桩作为桥梁工程抗液化加固措施的效果.通过构建液化场地桥梁结构的易损性曲线和地震危险曲线,在概率理论框架下诠释碎石桩加固措施对桩基桥梁地震风险的影响,并对有无碎石桩加固措施的计算...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号