首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 774 毫秒
1.
M Moos  R Tacke  H Scherer  D Teplow  K Früh  M Schachner 《Nature》1988,334(6184):701-703
Diverse glycoproteins of cell surfaces and extracellular matrices operationally termed 'adhesion molecules' are important in the specification of cell interactions during development, maintenance and regeneration of the nervous system. These adhesion molecules have distinct functions involving different cells at different developmental stages, but may cooperate when expressed together. Families of adhesion molecules which share common carbohydrate domains do exist, despite the structural and functional diversity of these glycoproteins. These include the Ca2+-independent neural adhesion molecules: N-CAM, myelin associated glycoprotein (MAG) and L1. L1 is involved in neuron-neuron adhesion, neurite fasciculation, outgrowth of neurites, cerebellar granule cell migration, neurite outgrowth on Schwann cells and interactions among epithelial cells of intestinal crypts. We show here that in addition to sharing carbohydrate epitopes with N-CAM and MAG, L1 is also a member of the immunoglobulin superfamily. It contains six C2 domains and also shares three type III domains with the extracellular matrix adhesion molecule fibronectin.  相似文献   

2.
A W Mudge 《Nature》1984,309(5966):367-369
Cell-cell interactions are thought to play a crucial part in determining the developmental fate of vertebrate cells and regulating their subsequent differentiation. In the peripheral nervous system, for example, signals from neuronal axons determine whether or not some Schwann cells wrap their plasma membrane concentricially around the axon to form a myelin sheath. Moreover, there is some evidence that the interactions between Schwann cells and neurones are not all one way: for example, Schwann cells are thought to provide signals for neuronal sprouting and regeneration. However, there are no clear examples in which Schwann cells have been shown to influence the normal development of neurones. Here I have used purified populations of embryonic sensory neurones and Schwann cells to demonstrate that Schwann cells have a dramatic influence on the development of these neurones. In the presence of Schwann cells, but not other cell types, the sensory neurones undergo a morphological transformation from an immature bipolar form to a mature pseudo-unipolar form. This provides a striking example of the importance of glial cells for neuronal development.  相似文献   

3.
G J Cole  A Loewy  L Glaser 《Nature》1986,320(6061):445-447
Cell-cell interactions are of critical importance during neural development, particularly since the migration of neural cells and the establishment of functional interactions between growing axons and their target cells has been suggested to depend upon cell recognition processes. Neurone-neurone adhesion has been well studied in vitro, and is mediated in part by the neural cell adhesion molecule N-CAM. N-CAM-mediated cell-cell adhesion has been postulated to occur by a homophilic binding mechanism, in which N-CAM on the surface of one cell binds to N-CAM on a neighbouring cell. Studies in our laboratory have identified a cell surface glycoprotein, now known to be N-CAM, which participates in cell-substratum interactions in the developing chicken nervous system. Although this adhesion involves a homophilic binding mechanism, the binding of the cell surface proteoglycan heparan sulphate to the glycoprotein is also required. This raises the question of whether the binding of heparan sulphate to N-CAM is also required for cell-cell adhesion. Here we show that the binding of retinal probe cells to retinal cell monolayers is inhibited by heparin, a functional analogue of heparan sulphate, but not by chondroitin sulphate. Monoclonal antibodies that recognize two different domains on N-CAM, the homophilic-binding and heparin-binding domains, inhibit cell-cell adhesion. The heparin-binding domain isolated from N-CAM by selective proteolysis also inhibits cell-cell adhesion when bound to the probe cells.  相似文献   

4.
Glial cells express N-CAM/D2-CAM-like polypeptides in vitro   总被引:6,自引:0,他引:6  
The joining together of neurites to form fascicles and the growth of axons along glial surfaces during early development suggest that neurone-neurone and neurone-glial adhesion interactions are of considerable importance for defining nerve tracts. In vitro studies have indicated that adhesion between neurones involves a glycoprotein that has been independently studied under the names of N-CAM (for neural cell adhesion molecule), D2-CAM and BSP-2 (refs 10, 11). As N-CAM/D2-CAM appears to be a homophilic ligand that binds to N-CAM/D2-CAM polypeptide on adjacent cells, this glycoprotein is potentially important in adhesion interactions between any two N-CAM/D2-CAM-expressing cells. While it has been suggested that neurone-glial adhesion involves molecules other than N-CAM/D2-CAM, it is known that N-CAM/D2-CAM antigenic determinants are expressed by glial cells in vivo and that injection of anti-N-CAM antibodies into the eye-cup of chick embryos disrupts normal patterns of neuritic apposition to glial endfeet in the developing optic stalk. Do the molecules expressed by glia share restricted antigenic determinants, or binding domains, with N-CAM/D2-CAM, or are N-CAM/D2-CAM polypeptides expressed by glia? Here we present immunocytochemical evidence which suggests that all classes of macroglia express N-CAM/D2-CAM antigenic determinants on their surfaces and immunochemical analyses which indicate that the molecules expressed by purified astrocytes are closely similar, or identical, to at least some forms of N-CAM/D2-CAM obtained from whole brain or purified neurones. However, our results also suggest that different N-CAM/D2-CAM polypeptides may be separately expressed by neurones and astrocytes.  相似文献   

5.
Neuronal-type Na+ and K+ channels in rabbit cultured Schwann cells   总被引:2,自引:0,他引:2  
S Y Chiu  P Schrager  J M Ritchie 《Nature》1984,311(5982):156-157
Nerve axons in the central and peripheral nervous system are normally surrounded by satellite cells. These cells, known as Schwann cells in the peripheral nervous system, interact with axons to form a myelin sheath, so allowing nerve impulses to proceed at high speed. Schwann cells are thought to differ from neurones in their membrane properties in one important aspect: they lack excitability. Using the patch-clamp technique we have now measured directly the ionic currents across the membrane of single Schwann cells cultured from newborn rabbits. Surprisingly, we found that these Schwann cells possess voltage-gated sodium and potassium channels that are similar to those present in neuronal membranes.  相似文献   

6.
H Marrero  M L Astion  J A Coles  R K Orkand 《Nature》1989,339(6223):378-380
The functions of glial cells in the nervous system are not well defined, with the exception of myelin production by oligodendrocytes, uptake of amino-acid synaptic transmitters, and a contribution to extracellular potassium homeostasis. Neuroglia have receptors for neurotransmitters which may be involved in neuron-glia interactions. Recent studies have demonstrated voltage-gated ion channels in glial membranes. In a study of the optic nerve of the frog, small areas of the surface were examined with the loose patch-clamp method, and voltage-gated Na+ and K+ channels, presumably located in the membranes of the astrocytes forming the glia limitans, were identified. We now report that nerve impulses in the axons of the frog optic nerve transiently alter the properties of the voltage-dependent membrane channels of the surface glial cells (astrocytes), a demonstration of a new form of neuron-glia interaction.  相似文献   

7.
Ecto-protein kinase activity on the external surface of neural cells   总被引:14,自引:0,他引:14  
Y H Ehrlich  T B Davis  E Bock  E Kornecki  R H Lenox 《Nature》1986,320(6057):67-70
ATP is secreted in association with neurotransmitters at certain synapses and neuromuscular junctions. Extracellular ATP is known to exert potent effects on the activity of cells in the nervous system, where it can act as a neurotransmitter or as a modulator regulating the activity of other neurohormones. We have suggested that such modulation may involve the activity of extracellular protein phosphorylation systems. It is well known that intracellular protein kinases are important in the regulation of various neuronal functions, but protein kinases which use extracellular ATP to phosphorylate proteins localized at the external surface of the plasma membrane (ecto-protein kinases) have not been demonstrated in neuronal cells. Here we present direct evidence for the existence of an ecto-protein kinase and demonstrate endogenous substrates for its activity at the surface of intact neural cells. The phosphorylation of one of these surface proteins is selectively stimulated during cell depolarization. In addition, neuronal cell adhesion molecules (N-CAMs) appear to be among the substrates of ecto-protein kinase activity. These results suggest a role for surface protein phosphorylation in regulating specific functions of developing and mature neurones.  相似文献   

8.
Yamagata M  Sanes JR 《Nature》2008,451(7177):465-469
Synaptic circuits in the retina transform visual input gathered by photoreceptors into messages that retinal ganglion cells (RGCs) send to the brain. Processes of retinal interneurons (amacrine and bipolar cells) form synapses on dendrites of RGCs in the inner plexiform layer (IPL). The IPL is divided into at least 10 parallel sublaminae; subsets of interneurons and RGCs arborize and form synapses in just one or a few of them. These lamina-specific circuits determine the visual features to which RGC subtypes respond. Here we show that four closely related immunoglobulin superfamily (IgSF) adhesion molecules--Dscam (Down's syndrome cell adhesion molecule), DscamL (refs 6-9), Sidekick-1 and Sidekick-2 (ref. 10)--are expressed in chick by non-overlapping subsets of interneurons and RGCs that form synapses in distinct IPL sublaminae. Moreover, each protein is concentrated within the appropriate sublaminae and each mediates homophilic adhesion. Loss- and gain-of-function studies in vivo indicate that these IgSF members participate in determining the IPL sublaminae in which synaptic partners arborize and connect. Thus, vertebrate Dscams, like Drosophila Dscams, play roles in neural connectivity. Together, our results on Dscams and Sidekicks suggest the existence of an IgSF code for laminar specificity in retina and, by implication, in other parts of the central nervous system.  相似文献   

9.
Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein   总被引:105,自引:0,他引:105  
Adult mammalian axon regeneration is generally successful in the peripheral nervous system (PNS) but is dismally poor in the central nervous system (CNS). However, many classes of CNS axons can extend for long distances in peripheral nerve grafts. A comparison of myelin from the CNS and the PNS has revealed that CNS white matter is selectively inhibitory for axonal outgrowth. Several components of CNS white matter, NI35, NI250(Nogo) and MAG, that have inhibitory activity for axon extension have been described. The IN-1 antibody, which recognizes NI35 and NI250(Nogo), allows moderate degrees of axonal regeneration and functional recovery after spinal cord injury. Here we identify Nogo as a member of the Reticulon family, Reticulon 4-A. Nogo is expressed by oligodendrocytes but not by Schwann cells, and associates primarily with the endoplasmic reticulum. A 66-residue lumenal/extracellular domain inhibits axonal extension and collapses dorsal root ganglion growth cones. In contrast to Nogo, Reticulon 1 and 3 are not expressed by oligodendrocytes, and the 66-residue lumenal/extracellular domains from Reticulon 1, 2 and 3 do not inhibit axonal regeneration. These data provide a molecular basis to assess the contribution of Nogo to the failure of axonal regeneration in the adult CNS.  相似文献   

10.
R L Chisholm  E Barklis  H F Lodish 《Nature》1984,310(5972):67-69
Upon starvation, the cellular slime mould Dictyostelium discoideum initiates a 24-h programme of differentiation. Within 6 h, cells move towards aggregation centres in response to pulsatile synthesis and secretion of cyclic AMP. At about 12 h, aggregates of 10(5) cells are formed, held together by newly made surface adhesion molecules. The cells then differentiate into the two principal types found in the terminal stage of development, spores and stalks. Here we show that the chemotaxis and aggregation stages of this developmental programme can be described as a series of sequential events in which these extracellular signals--starvation, cyclic AMP and cell-cell contact--induce specific, sequential changes in the pattern of gene expression.  相似文献   

11.
Major histocompatibility complex (MHC) molecules are not normally expressed in the central nervous system (CNS). However, aberrant expression has been observed in multiple sclerosis lesions and could contribute to the destruction of myelin or the myelinating cells known as oligodendrocytes. The mechanism of cell damage associated with aberrant MHC molecule expression is unclear: for example, overexpression of class I and class II MHC molecules in pancreatic beta cells in transgenic mice leads to nonimmune destruction of the cells and insulin-dependent diabetes mellitus. We have generated transgenic mice that express class I H-2Kb MHC molecules, under the control of the myelin basic protein promoter, specifically in oligodendrocytes. Homozygous transgenic mice have a shivering phenotype, develop tonic seizures and die at 15-22 days. This phenotype, which we term 'wonky', is due to hypomyelination in the CNS, and not to involvement of the immune system. The primary defect appears to be a shortage of myelinating oligodendrocytes resulting from overexpression of the class I MHC molecules.  相似文献   

12.
L L Lanier  G Yu  J H Phillips 《Nature》1989,342(6251):803-805
Natural killer (NK) cells are a subset of lymphocytes that mediate major histocompatibility complex (MHC)-nonrestricted cytotoxicity against tumours and virus-infected cells and secrete numerous cytokines on activation. NK cells are distinct from mature T lymphocytes, because they do not rearrange or productively transcribe T-cell receptor alpha-, beta-, gamma- or delta-chain genes and do not express the CD3 gamma- or delta-subunits. But recent studies indicate that NK cells do express CD3 zeta, co-associated with other membrane proteins. Here we report that CD16, the receptor for the Fc (constant) region of IgG, specifically associates with the CD3 zeta homodimer on the membrane of human NK cells, and that co-transfection with CD3 zeta complementary DNA permits expression of a transmembrane-linked CD16 complex on COS-7 cells. These findings indicate that CD3 zeta can co-associate with membrane receptors of diverse cell types and function as a common structure for signal transduction.  相似文献   

13.
C Ffrench-Constant  M C Raff 《Nature》1986,323(6086):335-338
Astrocytes are one of the most numerous cell types in the vertebrate central nervous system (CNS) and yet their functions are largely unknown. In the rat optic nerve there are two distinct types of astrocyte: type-1 astrocytes develop from one type of precursor cell, and type-2 astrocytes develop from bipotential, oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells, that initially give rise to oligodendrocytes (which make myelin in the CNS), and then to type-2 astrocytes. Type-1 astrocytes form the glial limiting membrane at the periphery of the optic nerve and are probably responsible for glial scar formation following nerve transection. The functions of type-2 astrocytes, which, like oligodendrocytes, are found mainly in tracts of myelinated axons throughout the CNS, are unknown. In this report we provide evidence that processes from type-2 astrocytes contribute to the structure of nodes of Ranvier, suggesting that the O-2A cell lineage is specialized for constructing myelin sheaths and nodes in the mammalian CNS.  相似文献   

14.
The ability of cells to form cell contacts, adhere to the extracellular matrix, change morphology, and migrate is essential for development, wound healing, metastasis, cell survival and the immune response. These events depend on the binding of integrin to the extracellular matrix, and assembly of focal adhesions, which are complexes comprising scaffolding and signalling proteins organized by adhesion to the extracellular matrix. Phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)) regulates interactions between these proteins, including the interaction of vinculin with actin and talin. The binding of talin to beta-integrin is strengthened by PtdIns(4,5)P(2), suggesting that the basis of focal adhesion assembly is regulated by this lipid mediator. Here we show that the type I phosphatidylinositol phosphate kinase isoform-gamma 661 (PIPKI gamma 661), an enzyme that makes PtdIns(4,5)P(2), is targeted to focal adhesions by an association with talin. PIPKI gamma 661 is tyrosine phosphorylated by focal adhesion associated kinase signalling, increasing both the activity of phosphatidylinositol phosphate kinase and its association with talin. This defines a mechanism for spatial generation of PtdIns(4,5)P(2) at focal adhesions.  相似文献   

15.
Cellular growth control and differentiation have been shown to be dependent on both cell-cell and cell-substrate contacts. Interactions of cells with extracellular material are critical events during embryonic development and maintenance of tissue function. Plasma membrane receptors have been described for components of the extracellular matrix such as fibronectin, laminin and various collagen types. Transmembrane signalling has been shown to be influenced by the lateral mobilities of the plasma membrane constituents. The interaction of cells with their extracellular matrix could thus have a significant effect on the mobility properties of the plasma membrane components. Here we have studied the dynamic properties of fluorescent membrane phospholipids in bovine endothelial cells using fluorescence recovery after photo-bleaching measurements. At this molecular level we find that the phospholipid lateral diffusion coefficient is dependent on the substrate upon which cells are allowed to adhere (collagen, fibronectin or a natural basement membrane) and on the topography of the cell (basal versus apical plasma membrane).  相似文献   

16.
D Sun  H Wekerle 《Nature》1986,320(6057):70-72
T lymphocytes specific for myelin basic protein (MBP) are responsible for the cellular events leading to autoimmune disease within the central (CNS) and peripheral (PNS) nervous systems. Both in actively induced and T-cell transfer versions of experimental autoimmune encephalomyelitis (EAE) and neuritis (EAN), the autoaggressive T cells are activated outside the nervous system and reach their target tissue via the blood circulation. The target specificity of the autoaggressive T cells is impressive; T-cell lines specific for MBP predominantly home to and affect the white matter of the CNS whereas T cells specific for PNS myelin protein P2 exclusively infiltrate peripheral nerves. Having penetrated the tight blood tissue barriers, the lymphocytes seem to interact with local cells expressing the relevant autoantigen in an immunogenic form. Although the exact mechanism of target finding and destruction is unknown, studies from our laboratory have shown that astrocytes, a main component of the normal CNS glia, can actively present antigen to specific T cells. This observation suggests that astrocytes are involved in natural immune reactivity within the CNS, and that they may be involved in pathological aberrations, such as in the development of autoimmune lesions. Having studied astrocyte/T-cell interactions in more detail, we discovered that encephalitogenic T-cell lines recognizing MBP on astrocytes will subsequently proceed to kill the presenting cells. Here we report that astrocyte killing follows the rules governing 'classical' T-cell-mediated cytolysis; it is antigen-specific, restricted by antigens of the major histocompatibility complex (MHC) and apparently contact-dependent. Our data suggest that the nature of the recognized antigenic epitope determines whether or not antigen recognition is followed by killing; moreover, killing of antigen-presenting astrocytes seems to be correlated with the capacity to transfer encephalomyelitis to normal syngeneic rats.  相似文献   

17.
A two-tiered mechanism for stabilization and immobilization of E-cadherin   总被引:1,自引:0,他引:1  
Cavey M  Rauzi M  Lenne PF  Lecuit T 《Nature》2008,453(7196):751-756
Epithelial tissues maintain a robust architecture which is important for their barrier function, but they are also remodelled through the reorganization of cell-cell contacts. Tissue stability requires intercellular adhesion mediated by E-cadherin, in particular its trans-association in homophilic complexes supported by actin filaments through beta- and alpha-catenin. How alpha-catenin dynamic interactions between E-cadherin/beta-catenin and cortical actin control both stability and remodelling of adhesion is unclear. Here we focus on Drosophila homophilic E-cadherin complexes rather than total E-cadherin, including diffusing 'free' E-cadherin, because these complexes are a better proxy for adhesion. We find that E-cadherin complexes partition in very stable microdomains (that is, bona fide adhesive foci which are more stable than remodelling contacts). Furthermore, we find that stability and mobility of these microdomains depend on two actin populations: small, stable actin patches concentrate at homophilic E-cadherin clusters, whereas a rapidly turning over, contractile network constrains their lateral movement by a tethering mechanism. alpha-Catenin controls epithelial architecture mainly through regulation of the mobility of homophilic clusters and it is largely dispensable for their stability. Uncoupling stability and mobility of E-cadherin complexes suggests that stable epithelia may remodel through the regulated mobility of very stable adhesive foci.  相似文献   

18.
Target size regulates calibre and myelination of sympathetic axons   总被引:6,自引:0,他引:6  
J T Voyvodic 《Nature》1989,342(6248):430-433
Axons in vertebrate peripheral nerves are ensheathed by Schwann cells. For some axons, this sheath consists of a single layer of glial cell cytoplasm and plasma membranes; for other axons, Schwann cells form multilayered myelin. Whether or not a Schwann cell makes myelin is determined by a signal from the axon, but the nature of this signal is not known. Here I show that sympathetic postganglionic axons, which are normally not myelinated, become myelinated when their calibre is increased as a result of increasing the size of the peripheral target they innervate. This result implies that axon calibre, which is known to be correlated with myelination, is in fact the crucial determinant of whether an axon becomes myelinated. Furthermore, the finding that increasing or decreasing target size causes corresponding increases or decreases in axon size indicates that axon calibre is itself regulated by retrograde signals from peripheral target tissues.  相似文献   

19.
Y Naparstek  I R Cohen  Z Fuks  I Vlodavsky 《Nature》1984,310(5974):241-244
We have previously found that lines of activated T lymphocytes specifically autosensitized to the basic protein of myelin (BP), on intravenous inoculation into syngeneic rats, were able to penetrate blood vessels, accumulate in the nervous system and cause experimental autoimmune encephalomyelitis (EAE). An important question is how effector T cells reach such targets outside the walls of blood vessels. To investigate this we have studied in vitro the interaction of anti-BP effector T lymphocytes with the basement membrane-like extracellular matrix produced by vascular endothelial cells. We now report that activated but not resting T lymphocytes produce an endoglycosidase capable of degrading heparan sulphate side chains of the proteoglycan scaffold of the extracellular matrix. Moreover, the anti-BP T lymphocytes respond to BP presented by extracellular matrix by markedly enhanced elaboration of the endoglycosidase. These results suggest that tissue-specific antigens on blood vessel walls could direct lymphocyte homing by activating enzymes that facilitate penetration of the subendothelial basal lamina. They also suggest that effector T lymphocytes can recognize antigen which is not associated with a major histocompatibility complex signal.  相似文献   

20.
Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration   总被引:156,自引:0,他引:156  
Fournier AE  GrandPre T  Strittmatter SM 《Nature》2001,409(6818):341-346
Nogo has been identified as a component of the central nervous system (CNS) myelin that prevents axonal regeneration in the adult vertebrate CNS. Analysis of Nogo-A has shown that an axon-inhibiting domain of 66 amino acids is expressed at the extracellular surface and at the endoplasmic reticulum lumen of transfected cells and oligodendrocytes. The acidic amino terminus of Nogo-A is detected at the cytosolic face of cellular membranes and may contribute to inhibition of axon regeneration at sites of oligodendrocyte injury. Here we show that the extracellular domain of Nogo (Nogo-66) inhibits axonal extension, but does not alter non-neuronal cell morphology. In contrast, a multivalent form of the N terminus of Nogo-A affects the morphology of both neurons and other cell types. Here we identify a brain-specific, leucine-rich-repeat protein with high affinity for soluble Nogo-66. Cleavage of the Nogo-66 receptor and other glycophosphatidylinositol-linked proteins from axonal surfaces renders neurons insensitive to Nogo-66. Nogo-66 receptor expression is sufficient to impart Nogo-66 axonal inhibition to unresponsive neurons. Disruption of the interaction between Nogo-66 and its receptor provides the potential for enhanced recovery after human CNS injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号