首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xenopus oocytes can secrete bacterial beta-lactamase   总被引:16,自引:0,他引:16  
M Wiedmann  A Huth  T A Rapoport 《Nature》1984,309(5969):637-639
Most secretory proteins are synthesized as precursor polypeptides carrying N-terminal, hydrophobic sequences which, by means of a signal recognition particle (SRP), trigger the membrane transfer of the polypeptide and are subsequently cleaved off. The signal sequences appear to be interchangeable between prokaryotes and eukaryotes. In bacteria, secretion only involves the crossing of a membrane, whereas in eukaryotes the secretory process can be separated into two distinct phases: translocation across the membrane of the rough endoplasmic reticulum and subsequent intraluminal transport by processes involving vesicle budding and fusion. Since secretory proteins must be distinguished from other soluble proteins destined for various sites in the reticular system, it is conceivable that eukaryotic secretory proteins possess additional markers distinct from the signal peptide to guide the polypeptide after its transfer through the membrane. Proteins are secreted at different rates from a eukaryotic cell, suggesting a role in intracellular transport for receptors with differing affinities for some topogenic features in secretory proteins. We have tested this possibility by introducing into the lumen of eukaryotic rough endoplasmic reticulum a prokaryotic protein which, by virtue of its origin, had not been adapted to the eukaryotic secretory pathway. We reasoned that secretion of the bacterial protein would indicate that after membrane transfer no topogenic signal(s) and corresponding recognition system(s) are required. We report here that this is indeed the case.  相似文献   

2.
J Armstrong  H Niemann  S Smeekens  P Rottier  G Warren 《Nature》1984,308(5961):751-752
In the eukaryotic cell, both secreted and plasma membrane proteins are synthesized at the endoplasmic reticulum, then transported, via the Golgi complex, to the cell surface. Each of the compartments of this transport pathway carries out particular metabolic functions, and therefore presumably contains a distinct complement of membrane proteins. Thus, mechanisms must exist for localizing such proteins to their respective destinations. However, a major obstacle to the study of such mechanisms is that the isolation and detailed analysis of such internal membrane proteins pose formidable technical problems. We have therefore used the E1 glycoprotein from coronavirus MHV-A59 as a viral model for this class of protein. Here we present the primary structure of the protein, determined by analysis of cDNA clones prepared from viral mRNA. In combination with a previous study of its assembly into the endoplasmic reticulum membrane, the sequence reveals several unusual features of the protein which may be related to its intracellular localization.  相似文献   

3.
Molinari M  Helenius A 《Nature》1999,402(6757):90-93
The formation of intra- and interchain disulphide bonds constitutes an integral part of the maturation of most secretory and membrane-bound proteins in the endoplasmic reticulum. Evidence indicates that members of the protein disulphide isomerase (PDI) superfamily are part of the machinery needed for proper oxidation and isomerization of disulphide bonds. Models based on in vitro studies predict that the formation of mixed disulphide bonds between oxidoreductase and substrate is intermediate in the generation of the native intrachain disulphide bond in the substrate polypeptide. Whether this is how thiol oxidoreductases work inside the endoplasmic reticulum is not clear. Nor has it been established which of the many members of the PDI superfamily interacts directly with newly synthesized substrate proteins, because transient mixed disulphides have never been observed in the mammalian endoplasmic reticulum during oxidative protein folding. Here we describe the mechanisms involved in co- and post-translational protein oxidation in vivo. We show that the endoplasmic-reticulum-resident oxidoreductases PDI and ERp57 are directly involved in disulphide oxidation and isomerization, and, together with the lectins calnexin and calreticulin, are central in glycoprotein folding in the endoplasmic reticulum of mammalian cells.  相似文献   

4.
Uehara T  Nakamura T  Yao D  Shi ZQ  Gu Z  Ma Y  Masliah E  Nomura Y  Lipton SA 《Nature》2006,441(7092):513-517
Stress proteins located in the cytosol or endoplasmic reticulum (ER) maintain cell homeostasis and afford tolerance to severe insults. In neurodegenerative diseases, several chaperones ameliorate the accumulation of misfolded proteins triggered by oxidative or nitrosative stress, or of mutated gene products. Although severe ER stress can induce apoptosis, the ER withstands relatively mild insults through the expression of stress proteins or chaperones such as glucose-regulated protein (GRP) and protein-disulphide isomerase (PDI), which assist in the maturation and transport of unfolded secretory proteins. PDI catalyses thiol-disulphide exchange, thus facilitating disulphide bond formation and rearrangement reactions. PDI has two domains that function as independent active sites with homology to the small, redox-active protein thioredoxin. During neurodegenerative disorders and cerebral ischaemia, the accumulation of immature and denatured proteins results in ER dysfunction, but the upregulation of PDI represents an adaptive response to protect neuronal cells. Here we show, in brains manifesting sporadic Parkinson's or Alzheimer's disease, that PDI is S-nitrosylated, a reaction transferring a nitric oxide (NO) group to a critical cysteine thiol to affect protein function. NO-induced S-nitrosylation of PDI inhibits its enzymatic activity, leads to the accumulation of polyubiquitinated proteins, and activates the unfolded protein response. S-nitrosylation also abrogates PDI-mediated attenuation of neuronal cell death triggered by ER stress, misfolded proteins or proteasome inhibition. Thus, PDI prevents neurotoxicity associated with ER stress and protein misfolding, but NO blocks this protective effect in neurodegenerative disorders through the S-nitrosylation of PDI.  相似文献   

5.
Immune recognition of intracellular proteins is mediated by major histocompatibility complex (MHC) class I molecules that present short peptides to cytotoxic T cells. Evidence suggests that peptides arise by cleavage of proteins in the cytoplasm and are transported by a signal-independent mechanism into a pre-Golgi region of the cell, where they take part in the assembly of class I heavy chains with beta 2-microglobulin (reviewed in refs 5-7). Analysis of cells that have defects in class I molecule assembly and antigen presentation has shown that this phenotype can result from mutations in either of the two ABC transporter genes located in the class II region of the MHC. This suggested that the protein complex encoded by these two genes transports peptides from the cytosol into the endoplasmic reticulum. Here we report additional evidence by showing that the transporter complex is located in the endoplasmic reticulum membrane and is probably oriented with its ATP-binding domains in the cytosol.  相似文献   

6.
Role of Bax and Bak in mitochondrial morphogenesis   总被引:1,自引:0,他引:1  
Karbowski M  Norris KL  Cleland MM  Jeong SY  Youle RJ 《Nature》2006,443(7112):658-662
Bcl-2 family proteins are potent regulators of programmed cell death. Although their intracellular localization to mitochondria and the endoplasmic reticulum has focused research on these organelles, how they function remains unknown. Two members of the Bcl-2 family, Bax and Bak, change intracellular location early in the promotion of apoptosis to concentrate in focal clusters at sites of mitochondrial division. Here we report that in healthy cells Bax or Bak is required for normal fusion of mitochondria into elongated tubules. Bax seems to induce mitochondrial fusion by activating assembly of the large GTPase Mfn2 and changing its submitochondrial distribution and membrane mobility-properties that correlate with different GTP-bound states of Mfn2. Our results show that Bax and Bak regulate mitochondrial dynamics in healthy cells and indicate that Bcl-2 family members may also regulate apoptosis through organelle morphogenesis machineries.  相似文献   

7.
Assembly of class I major histocompatibility complex (MHC) molecules involves the interaction of two distinct polypeptides (the heavy and light chains) with peptide antigen. Cell lines synthesizing both chains but expressing low levels of MHC class I molecules on their surface as a result of a failure in assembly and transport have been identified. We now report that although the apparent steady-state distribution in these cells of class I molecules is in the endoplasmic reticulum (ER), the molecules in fact are recycled between the ER and Golgi, rather than retained in the ER. This explains the failure of class I molecules to negotiate the secretory pathway. Class I molecules do not seem to be modified by Golgi enzymes, suggesting that the proteins do not reach the Golgi apparatus during recycling. But morphological and subcellular fractionation evidence indicates that they pass through the cis Golgi or a Golgi-associated organelle, which we postulate to be the recycling organelle. This compartment, which we call the 'cis-Golgi network', would thereby be a sorting organelle that selects proteins for return to the ER.  相似文献   

8.
内质网是真核细胞合成膜蛋白和分泌蛋白的主要场所,当细胞经历缺氧、钙离子稳态失衡、糖基化异常或内质网内蛋白合成急剧增加时,就会造成腔内未折叠蛋白聚集体的形成,引发细胞毒性.这时便会激活一系列信号通路,通过增加内质网中分子伴侣的数量、降低蛋白合成速率、加快未折叠蛋白降解来保护细胞,当刺激严重或时间过长则会引起细胞凋亡.这种反应就称为内质网应激反应,也叫未折叠蛋白反应.正常人体细胞随着分裂次数增加或受外界因素诱导逐渐进入一种不可逆的细胞周期阻滞,即细胞衰老.细胞衰老会伴随着各种生理生化的变化,如内质网的结果和功能的改变.内质网应激反应会随着细胞衰老而发生一些改变,与衰老相关疾病密切相关而备受关注.因此深入研究内质网应激反应对于揭示衰老及衰老相关疾病的分子机制具有重要的科学意义.  相似文献   

9.
The T-cell immune response is directed against antigenic peptide fragments generated in intracellular compartments, the cytosol or the endocytic system. Peptides derived from cytosolic proteins, usually of biosynthetic origin, are presented efficiently to T-cell receptors by major histocompatibility complex (MHC) class I molecules, with which they assemble, probably in the endoplasmic reticulum (ER). In the absence of recognizable N-terminal signal sequences, such cytosolic peptides must be translocated across the ER membrane by a novel mechanism. Genes apparently involved in the normal assembly and transport of class I molecules may themselves be encoded in the MHC. Here we show that one of these, the rat cim gene, maps to a highly polymorphic part of the MHC class II region encoding two novel members of the family of transmembrane transporters related to multidrug resistance. Other members of this family of transporter proteins are known to be capable of transporting proteins and peptides across membranes independently of the classical secretory pathway. Such molecules are credible candidates for peptide pumps that move fragments of antigenic proteins from the cytosol into the ER.  相似文献   

10.
J Luirink  S High  H Wood  A Giner  D Tollervey  B Dobberstein 《Nature》1992,359(6397):741-743
Hydrophobic signal-sequences direct the transfer of secretory proteins across the inner membrane of prokaryotes and the endoplasmic reticulum membranes of eukaryotes. In mammalian cells, signal-sequences are recognized by the 54K protein (M(r) 54,000) of the signal recognition particle (SRP) which is believed to hold the nascent chain in a translocation-competent conformation until it contacts the endoplasmic reticulum membrane. The SRP consists of a 7S RNA and six different polypeptides. The 7S RNA and the 54K signal-sequence-binding protein (SRP54) of mammalian SRP exhibit strong sequence similarity to the 4.5S RNA and P48 protein (Ffh) of Escherichia coli which form a ribonucleoprotein particle. Depletion of 4.5S RNA or overproduction of P48 causes the accumulation of the beta-lactamase precursor, although not of other secretory proteins. Whether 4.5S RNA and P48 are part of an SRP-like complex with a role in protein export is controversial. Here we show that the P48/4.5S RNA ribonucleoprotein complex interacts specifically with the signal sequence of a nascent secretory protein and therefore is a signal recognition particle.  相似文献   

11.
There is a debate over how protein trafficking is performed through the Golgi apparatus. In the secretory pathway, secretory proteins that are synthesized in the endoplasmic reticulum enter the early compartment of the Golgi apparatus called cis cisternae, undergo various modifications and processing, and then leave for the plasma membrane from the late (trans) cisternae. The cargo proteins must traverse the Golgi apparatus in the cis-to-trans direction. Two typical models propose either vesicular transport or cisternal progression and maturation for this process. The vesicular transport model predicts that Golgi cisternae are distinct stable compartments connected by vesicular traffic, whereas the cisternal maturation model predicts that cisternae are transient structures that form de novo, mature from cis to trans, and then dissipate. Technical progress in live-cell imaging has long been awaited to address this problem. Here we show, by the use of high-speed three-dimensional confocal microscopy, that yeast Golgi cisternae do change the distribution of resident membrane proteins from the cis nature to the trans over time, as proposed by the maturation model, in a very dynamic way.  相似文献   

12.
In mammalian cells, short peptides derived from intracellular proteins are displayed on the cell membrane associated with class I molecules of the major histocompatibility complex (MHC). The surface presentation of class I-peptide complexes presumably alerts the immune system to intracellular viral protein synthesis. Peptides derived from the cytosol must reach the cisternae of the endoplasmic reticulum where they are required for the assembly of stable class I molecules, and it has been proposed that the products of the two MHC-encoded ATP-binding cassette (ABC) transporter genes function to deliver the peptides across the membrane of the endoplasmic reticulum. This idea is supported by experiments in which transfection of a human cell line defective in class I expression with a complementary DNA of one of these genes restored cell surface expression levels. Here we show that the complete phenotype of the mouse mutant cell line RMA-S, in which lack of surface expression of stable class I molecules correlates with an inability to present viral peptides originating in the cytosol, is repaired by the cDNA of the other transporter gene. These results are consistent with the possibility that the two transporter polypeptides form a heterodimer.  相似文献   

13.
N J Bulleid  R B Freedman 《Nature》1988,335(6191):649-651
The formation of disulphide bonds in mammalian secretory and cell-surface proteins occurs in the lumen of the endoplasmic reticulum and is believed to be catalysed by the enzyme protein disulphide-isomerase (PDI). The evidence for this physiological role for PDI is circumstantial and relates to the cell and tissue distribution of the enzyme, its developmental behaviour and its catalytic properties in vitro. A clear requirement for PDI in the correct folding or assembly of disulphide-bonded proteins during biosynthesis has not been demonstrated. We have prepared dog pancreas microsomes which are deficient in soluble lumenal proteins, including PDI, but which are still able to translocate and process proteins synthesized in vitro. Using the formation of intramolecular disulphide bonds during the in vitro synthesis of gamma-gliadin, a wheat storage protein, as a model, we have demonstrated that these microsomes are defective in co-translational formation of disulphide bonds. Reconstitution of these microsomes with purified PDI reverses this defect.  相似文献   

14.
Intracellular transport of class II MHC molecules directed by invariant chain   总被引:23,自引:0,他引:23  
Three structural motifs in the invariant chain (li) control the intracellular transport of class II major histocompatibility complex molecules. An endoplasmic reticulum retention signal in the full-length li suggests a role for li in the alpha-beta heterodimer assembly. Another signal motif directs a truncated li, alone or associated with individual class II chains, to a degradation compartment by a pathway circumventing the Golgi. When this truncated li binds alpha-beta dimers, a third signal dominates, directing the complex by way of the Golgi to vesicles in the cell periphery, which may represent a subcompartment of recycling endosomes.  相似文献   

15.
Rapoport TA 《Nature》2007,450(7170):663-669
A decisive step in the biosynthesis of many proteins is their partial or complete translocation across the eukaryotic endoplasmic reticulum membrane or the prokaryotic plasma membrane. Most of these proteins are translocated through a protein-conducting channel that is formed by a conserved, heterotrimeric membrane-protein complex, the Sec61 or SecY complex. Depending on channel binding partners, polypeptides are moved by different mechanisms: the polypeptide chain is transferred directly into the channel by the translating ribosome, a ratcheting mechanism is used by the endoplasmic reticulum chaperone BiP, and a pushing mechanism is used by the bacterial ATPase SecA. Structural, genetic and biochemical data show how the channel opens across the membrane, releases hydrophobic segments of membrane proteins laterally into lipid, and maintains the membrane barrier for small molecules.  相似文献   

16.
D G?rlich  E Hartmann  S Prehn  T A Rapoport 《Nature》1992,357(6373):47-52
To identify components of the mammalian endoplasmic reticulum involved in the translocation of secretory proteins, crosslinking and reconstitution methods were combined. A multispanning abundant membrane glycoprotein was found which is in proximity to nascent chains early in translocation. In reconstituted proteoliposomes, this protein is stimulatory or required for the translocation of secretory proteins.  相似文献   

17.
Packaging of proteins from the endoplasmic reticulum into COPII vesicles is essential for secretion. In cells, most COPII vesicles are approximately 60-80?nm in diameter, yet some must increase their size to accommodate 300-400?nm procollagen fibres or chylomicrons. Impaired COPII function results in collagen deposition defects, cranio-lenticulo-sutural dysplasia, or chylomicron retention disease, but mechanisms to enlarge COPII coats have remained elusive. Here, we identified the ubiquitin ligase CUL3-KLHL12 as a regulator of COPII coat formation. CUL3-KLHL12 catalyses the monoubiquitylation of the COPII-component SEC31 and drives the assembly of large COPII coats. As a result, ubiquitylation by CUL3-KLHL12 is essential for collagen export, yet less important for the transport of small cargo. We conclude that monoubiquitylation controls the size and function of a vesicle coat.  相似文献   

18.
Inositol 1,4,5-trisphosphate (InsP3) mediates the effects of several neurotransmitters, hormones and growth factors by mobilizing Ca2+ from a vesicular, non-mitochondrial intracellular store. Many studies have indirectly suggested the endoplasmic reticulum (ER) to be the site of InsP3 action, though some have implicated the plasma membrane or a newly described smooth surfaced structure, termed the calciosome. Using antibodies directed against a purified InsP3-receptor glycoprotein, of relative molecular mass 260,000, in electron microscope immunocytochemical studies of rat cerebellar Purkinje cells, we have now localized the InsP3 receptor to ER, including portions of the rough endoplasmic reticulum, a population of smooth-membrane-bound organelles (smooth ER), a portion of subplasmalemmal cisternae and the nuclear membrane, but not to mitochondria or the cell membrane. These results suggest that in cerebellar Purkinje cells, InsP3-induced intracellular calcium release is not the property of a single organelle, but is effected by specialized portions of both rough and smooth ER, and possibly by other smooth surfaced structures. The present findings are the first immunocytochemical demonstration of an InsP3 receptor within a cell.  相似文献   

19.
Membrane protein association by potential intramembrane charge pairs.   总被引:27,自引:0,他引:27  
The transmembrane domain of the alpha chain of the T-cell receptor is responsible both for its assembly with the CD3 delta chain and for rapid degradation of the unassembled chain within the endoplasmic reticulum. The determinant for both assembly and degradation is located in a segment of eight residues containing two basic amino acids. We show here that placement of a single basic residue in the transmembrane domain of the Tac antigen can induce interaction with the CD3 chain, through its transmembrane acidic residue. This interaction is most favoured when the interacting residues are located at the same level in the membrane. The ability to induce protein-protein interaction by placing charge pairs within transmembrane domains suggests an approach to producing artificial dimers.  相似文献   

20.
Choi SB  Wang C  Muench DG  Ozawa K  Franceschi VR  Wu Y  Okita TW 《Nature》2000,407(6805):765-767
Rice seeds, a rich reserve of starch and protein, are a major food source in many countries. Unlike the seeds of other plants, which typically accumulate one major type of storage protein, rice seeds use two major classes, prolamines and globulin-like glutelins. Both storage proteins are synthesized on the endoplasmic reticulum (ER) and translocated to the ER lumen, but are then sorted into separate intracellular compartments. Prolamines are retained in the ER lumen as protein bodies whereas glutelins are transported and stored in protein storage vacuoles. Mechanisms responsible for the retention of prolamines within the ER lumen and their assembly into intracisternal inclusion granules are unknown, but the involvement of RNA localization has been suggested. Here we show that the storage protein RNAs are localized to distinct ER membranes and that prolamine RNAs are targeted to the prolamine protein bodies by a mechanism based on RNA signal(s), a process that also requires a translation initiation codon. Our results indicate that the ER may be composed of subdomains that specialize in the synthesis of proteins directed to different compartments of the plant endomembrane system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号