首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 201 毫秒
1.
为深入研究预应力效应对波形钢腹板曲线箱梁翘曲应力的影响,将预应力等效荷载应用到波形钢腹板曲线箱梁的计算中。通过乌曼斯基第二翘曲理论,根据波形钢腹板曲线箱梁的力学特性,建立了考虑预应力效应的波形钢腹板曲线箱梁的扭转微分方程,并采用初参数法求得约束扭转应力。研究结果表明:在非对称布置预应力钢束的情况下,将考虑预应力效应与不考虑预应力效应所引起的约束扭转应力进行对比,得到由预应力效应所引起的约束扭转正应力的比例达到33%,由预应力效应所引起的约束扭转剪应力的比例达到14.28%,由此可见在非对称布筋的情况下预应力效应产生的扭转效应不能忽视。将本研究的计算结果与有限元计算结果进行比较,吻合较好,表明本研究计算方法精度较高,可进一步完善波形钢腹板曲线箱梁桥的计算理论。  相似文献   

2.
以杭瑞洞庭大桥为研究对象,建立设置中央扣和无中央扣的大跨度悬索桥有限元模型,研究中央扣对悬索桥跨中短吊索疲劳损伤的影响。首先,采用谐波合成法生成大桥桥址处的脉动风场,采用Monte Carlo法模拟随机车流样本,基于ANSYS软件建立风-车-桥耦合振动分析模型,分析桥梁结构在脉动风和车辆荷载单独与联合作用下的动力响应;其次,采用雨流计数法统计跨中短吊索的应力时程,得到吊索的应力幅值、应力均值和循环次数;最后,基于Miner损伤线性累计理论分析中央扣对跨中短吊索的等效总应力幅值和疲劳损伤度的影响。研究结果表明:中央扣对悬索桥竖弯刚度影响较小,但会提高悬索桥的纵飘刚度和反对称扭转刚度,显著减小荷载作用下缆梁相对位移和跨中短吊索的弯曲应力;中央扣不会改变脉动风荷载作用下跨中短吊索的缆梁相对运动特性,但会改变车辆荷载作用下跨中短吊索的缆梁相对运动特性,并显著降低缆梁相对位移对车速的敏感性;在脉动风和车辆荷载联合作用下,跨中短吊索的等效总应力幅值小于脉动风和车辆荷载单独作用下等效应力幅值的叠加值;在脉动风和车辆荷载联合作用下,中央扣会显著减小跨中短吊索尤其是靠近中央扣位置处吊索的等效总应力幅值和...  相似文献   

3.
依据南京长江第三大桥的实测交通流统计数据,结合等效疲劳损伤原理建立随机状态下的车辆荷载谱,基于有限元数值仿真程序进行全桥动力响应分析。通过计算大桥在实测车流作用下主梁不同位置位移和内力的动力响应时程曲线,分析车辆运营时程内主梁截面内力变化及动力放大系数。结果表明:随机车流作用下大桥主梁塔根处弯矩及轴力绝对值最大,跨中处弯矩及轴力变化幅值最大,而在1/4跨位移动力响应最大。跨中、1/4跨和塔根附近截面在时程内的最大应力幅值处,动力放大系数在1.00~1.03之间,动力放大系数比单考虑弯矩或轴力时稳定,且动应力放大系数与国内现行规范的动力放大系数较为吻合。  相似文献   

4.
体外预应力对波形钢腹板箱梁自振频率的影响分析   总被引:1,自引:0,他引:1  
为了研究体外预应力对波形钢腹板箱梁动力特性的影响,推导了波形钢腹板箱梁在体外预应力作用下的自振频率计算公式.以5.2 m缩尺波形钢腹板试验梁为对象,利用有限元软件ANSYS建立了预应力波形钢腹板箱梁的模型,对其进行了模态分析.通过对试验梁模态试验的自振频率测试数据与理论计算值以及有限元分析数据进行对比,证明了理论公式推导的正确性,论证了有限元模型的适用性.采用理论计算和有限元数值计算相结合的方法,研究了体外预应力钢束拉力、锚固位置以及截面积对波形钢腹板自振频率的影响.研究结果表明:三者对波形钢腹板箱梁自振频率的影响均较小,在实际工程中可以忽略体外预应力对波形钢腹板箱梁动力特性的影响.  相似文献   

5.
为克服传统大跨预应力混凝土(Prestressed Concrete, PC)连续梁桥自重过大、跨中过度下挠和腹板开裂的问题,将超高性能混凝土(Ultra-high Performance Concrete, UHPC)与波形钢腹板(Corrugated Steel Web, CSW)组合,提出大跨径CSWs-UHPC组合连续箱梁桥方案,对该结构的静力性能和抗震性能进行了计算分析,并将其与CSWs-普通混凝土(Normal Concrete, NC)组合连续箱梁桥和PC连续箱梁桥进行对比,结果表明:相比CSWs-NC组合箱梁桥和PC箱梁桥,CSWs-UHPC组合箱梁桥的自重分别降低45%和54%;CSWs-UHPC组合箱梁桥耐久性强、全寿命周期内的经济性具有竞争力;静力计算结果满足规范要求;合理中支点梁高与中跨跨径比Hs/L为1/16~1/22,中跨跨中与中支点合理梁高比Hm/Hs为1/1.5~(-0.2+0.029L/Hs);CSWs-UHPC组合箱梁桥横向弯曲自振频率小于PC箱梁桥,竖向弯曲自振频率略大于CSWs-NC组合箱梁桥及PC箱梁桥,较轻的上部结构可大幅降低惯性荷载,使CSWs-UHPC组合箱梁桥具有优异的抗震性能.这种新型组合桥梁可有效克服大跨径连续梁桥下挠、开裂的病害,大幅降低地震响应,是大跨径连续梁桥中具有较强竞争优势的结构型式.  相似文献   

6.
为了研究节段预制拼装波形钢腹板连续组合箱梁的抗剪性能,制作两片缩尺试验梁,包括节段拼装变截面波形钢腹板连续箱梁和相同尺寸的整体浇筑变截面波形钢腹板连续箱梁. 通过静力试验和数值分析,得到了节段拼装梁的剪应力分布规律、波形钢腹板承剪比例等. 结果表明:在中跨对称加载作用下,中跨1/4位置处节段拼装梁与整体梁波形钢腹板的剪应力沿梁高方向均匀分布,节段拼装梁的剪应力值要大于整体梁的相应值. 推导出节段拼装变截面波形钢腹板组合箱梁的剪应力计算公式,并考虑施工工艺对剪应力的影响,通过与实测值对比验证公式的准确性. 两片试验梁的波形钢腹板的承剪比受荷载影响较小,保持一个恒定的比例;两片试验梁在中支座位置处的钢腹板承剪比均为50%,并沿着试验梁纵向方向向两侧不断增大;在中跨1/4位置,节段拼装梁钢腹板的承剪比达到85%以上,整体梁的钢腹板在该位置的承剪比在75%左右,两片试验梁在边跨相应位置承剪比相差不大. 将适用于节段拼装混凝土箱梁的AASHTO接缝抗剪强度计算公式乘0.9可用于接缝截面抗剪承载力计算;上述公式值与试验值、有限元结果的误差在5%左右,可以较好地预测钢混组合结构胶接缝的抗剪强度.  相似文献   

7.
通过建立大量的波形钢腹板预应力混凝土组合箱梁桥空间有限元模型,计算和分析钢腹板尺寸参数的变化对弯-扭耦合作用下箱梁钢腹板屈曲临界荷载系数及屈曲模态的影响规律。计算及分析结果表明:跨中偏载作用下,波形钢腹板的屈曲总是发生在跨中偏载一侧的腹板上;当只有箱梁的高跨比变化或当只有波形钢腹板的厚度变化时,在不同的折叠角度范围内,其腹板抗屈曲能力的变化幅度不同,但当折叠角度一定时,则腹板抗屈曲能力或箱梁抗扭能力的变化幅度基本相同;当只有腹板折叠角度变化时,在不同箱梁高跨比范围内,其箱梁抗扭能力的变化幅度也不同。  相似文献   

8.
为分析大跨径预应力混凝土(简称PC)箱梁跨中区段在车辆荷载作用下的疲劳累积损伤,以某PC连续刚构桥为例,对车辆荷载产生的疲劳应力谱进行了研究.首先,运用实桥交通量调查数据,计算得到了等效标准疲劳车的总轴重,据此从相关设计规范中选取了标准疲劳车模型.其次,运用Newmark法进行了动力时程分析,得到了标准疲劳车通过全桥时跨中截面的内力历程,并运用雨流计数法对内力历程进行了计数处理.然后,根据实桥交通量调查数据,分析了桥梁设计基准期内疲劳荷载的循环次数.最后,依据Miner线性累积损伤理论以及桥梁实际受力状况,分别确定了200万次室内疲劳试验的等效疲劳应力幅和疲劳平均应力,由此得到了由车辆荷载产生的疲劳应力谱.  相似文献   

9.
波形钢腹板PC组合箱梁桥抗弯承载力计算   总被引:17,自引:2,他引:17  
结合波形钢腹板PC组合箱梁桥抗弯特性,对该类桥的抗弯承载能力计算方法进行了探讨。分析了波形钢腹板组合箱梁有效分布宽度、偏载效应的已有研究成果,参考国外对该类桥中体外预应力筋的有效高度和极限应力取值,根据弯曲理论推导出波形钢腹板PC组合箱梁桥抗弯承载能力计算公式。模型梁算例表明,该计算方法简单可行。  相似文献   

10.
为较简便地设计出波形钢腹板箱梁(BSW)桥的桥面板,基于框架分析法的基本原理,结合波形钢腹板箱梁的结构特点和力学特性,建立适用于单箱室波形钢腹板箱梁桥桥面板横向弯矩的计算方法,再对波形钢腹板箱梁和混凝土腹板箱梁在相同荷载作用下顶板的横向弯矩进行对比,对几座代表性的单箱室波形钢腹板箱梁桥顶板横向弯矩进行计算分析。研究结果表明:波形钢腹板箱梁桥的桥面板最大横向弯矩远高于同类混凝土腹板箱梁的横向弯矩峰值,提出的单箱波形钢腹板箱梁桥顶板横向设计弯矩的建议值可为今后同类波形钢腹板箱梁桥顶板尺寸拟定及配筋设计提供参考。  相似文献   

11.
由于钢桥面板的疲劳损伤主要来源于车辆荷载的反复作用,因此,为了预测钢箱梁斜拉桥的寿命,需要对其在重载交通流量下的疲劳荷载谱进行研究.该文以某大跨度钢箱梁斜拉桥为背景,基于桥梁健康监测系统中的WIM模块采集得到一定时段的车重、轴数、轴距等车辆荷载参数,采用统计分析方法对其进行批量化处理分析,得到了等效模型车的疲劳荷载谱.以此为基础,选取了钢箱梁斜拉桥易发生疲劳损伤的U型肋、盖板、横隔梁等重点部位进行疲劳寿命分析,分析结果表明:各重点部位尚未产生过大损伤疲劳.  相似文献   

12.
针对目前规范中缺少有关波形钢腹板组合连续梁桥有效翼缘宽度的相关规定,提出一种翼缘有效宽度计算方法,以某大跨度波形钢腹板预应力混凝土组合连续箱梁桥为背景,对其有效翼缘宽度计算进行初步研究,研究结果表明:在自重和集中荷载作用下,跨中混凝上内衬边缘的剪力滞效应显著,翼缘板的有效翼缘宽度系数分别达到0.87和0.7左右,其它部位剪力滞效应不明显;而预应力荷载作用下,波形钢腹板组合连续箱梁的各截面处的剪力滞效应均不明显,可以忽略不计,最后通过有限元计算结果与国内外规范对比发现,波形钢腹板箱梁跨中部分有效翼缘宽度与混凝土箱梁基本一致,设计计算时可参照普通混凝土箱梁;内衬边缘截面的剪力滞效应介于普通混凝土箱梁与钢箱梁之间,其有效翼缘宽度的计算也应介于二者之间。  相似文献   

13.
分析了润扬悬索桥结构健康监测系统记录的钢箱梁结构主要部件在交通和环境载荷下的应变时程曲线的规律,研究得到了润扬悬索桥钢箱梁结构在正常交通载荷、重车过桥和台风经过时的疲劳应力谱的特征;结合该桥实时监测的温度变化,分析得到了钢箱梁结构应变时程和温度时程之间的关联性.研究结果表明:润扬大桥结构健康监测系统中的局部应变监测系统能够有效提供钢箱梁结构疲劳应力监测信息;目前各监测部位的有效应力幅较低,主要由车辆和环境气温变化共同引起,疲劳应力的平均值与环境气温变化有很大相关性;重型卡车通过对桥梁造成的疲劳损伤增量幅值是一般车辆载荷经过时引起的几十甚至上百倍,因此在特大型车辆通过时需要密切关注和监测其引起的过载及其对疲劳累积过程的影响.  相似文献   

14.
穆文均  郭增伟  张卓 《科学技术与工程》2020,20(36):15088-15094
为探讨汽车荷载作用下跨径、桥宽对装配式预应力混凝土简支T梁桥汽车荷载效应的影响,以交通部2008年T梁桥通用设计图为背景,利用实体有限元模型对比分析了25m、30m、35m三种跨径和9.0m、11.25m、13.5m、15.75m和18m五种桥宽下的竖/横向位移、竖/横向弯矩、纵向应力和扭转角,并与T梁桥实用空间解析解进行了对比分析。通过分析发现:汽车荷载作用下装配式T梁会同时出现竖向和横向挠曲变形,竖向荷载效应随桥梁宽度的增加而近似线性减小,但其横向形变效应会受桥梁跨径、宽度、布载形式等多种因素影响;当装配式T梁桥的所有T梁均使用边梁的设计活载效应时,T梁最大应力的解析结果能包络T梁的活载横向挠曲效应,但当跨径超过30m后中梁活载应力最大值可能会超过刚性横梁法的计算结果;T梁的侧向弯曲会显著增加截面中性轴附近的拉应力,且随着跨径的增大梁体侧向弯曲引起的中性轴位置处应力越大,T梁腹板外侧的分布钢筋最好能按照T梁腹板承受的横向弯矩大小设计为受力钢筋,并减小钢筋间距以更好地防止T梁腹板的竖向开裂。  相似文献   

15.
为研究多车激励作用下大跨径桥梁桥面铺装层的动力学响应,建立含有Fiala轮胎的多刚体实车模型以及大跨径桥梁有限元精细模型,考虑桥面随机不平顺激励,构建包含桥面铺装层的车-桥刚柔耦合系统动力学模型。计算准静态条件下桥梁控制截面的挠度,并与现场静载试验进行对比,验证了所建车-桥耦合模型的正确性与计算结果的有效性。研究不同编队多车荷载作用下波形钢腹板连续箱梁桥铺装的动力响应,不同工况对于车辆后轴悬架力和垂向轮胎力的影响,结果表明:多车荷载相比于单个车辆荷载所引起的动力响应更大,更容易引起桥面铺装和桥梁结构的早期损伤;在车辆数量相同、车速相同、前后车距相等的情况下,车辆行驶编队不同时所引起的桥面铺装层最大挠度、最大纵向应力和最大横向剪应力分别增大了19.7%、23.5%和8.0%,且最大纵向拉应力和剪应力均发生在防水混凝土-混凝土梁之间,容易产生早期疲劳开裂;车辆后轴悬架力随着载重增加而增大,垂向轮胎力随着速度和载重增加而增大。  相似文献   

16.
波形钢腹板PC组合箱梁桥是一种经济、高效、施工简便的新型桥梁结构形式,随着我国对波形钢腹板PC组合箱梁结构研究的不断深入和应用技术的成熟,它将在我国的桥梁工程中得到愈来愈广泛的应用。以卫河特大桥为例,对宽幅多室波形钢腹板PC组合箱梁的施工技术及工艺进行了阐述。  相似文献   

17.
折腹式组合梁桥考虑剪切变形的挠度计算   总被引:1,自引:0,他引:1  
提出考虑剪切变形的弹性弯曲理论分析折腹式组合梁桥.通过假定位移场,建立内力平衡方程、变形协调条件以及物理方程,依据边界条件和荷载工况求出解析解.以折腹式I型和箱型梁为算例,将该理论结果和有限元计算及试验结果进行比较,验证其妥当性.基于该理论得出跨中挠度简化计算式,给出考虑剪切变形影响与否的高跨比界限.  相似文献   

18.
针对车轮荷载作用下钢箱梁的疲劳构造细节等级评定问题,基于应力影响线,研究钢箱梁9种疲劳构造细节的局部疲劳应力。根据等效损伤原理对最大应力幅进行修正,并以此为依据划分钢箱梁疲劳构造细节。结果表明:车轮荷载对钢箱梁9种疲劳构造细节的应力影响范围均较小,横隔板与顶板、纵肋相交处的应力影响范围为横隔板间距;顶板与纵肋相交处、纵肋对接处以及顶板对接处,应力影响范围为横隔板间距的1/2。钢箱梁横隔板与纵肋相交处的修正等效应力幅最大,纵肋对接处的修正等效应力幅最小。考虑受力和施工质量,钢箱梁疲劳构造细节可划分为5个疲劳应力等级,并给出9种疲劳构造细节对应的等级。  相似文献   

19.
基于桥梁健康监测系统记录的温度时程数据,研究钢箱梁顶板、底板的温度变化特征和规律,利用间接耦合法将热分析的温度数据作为体荷载施加于结构多尺度有限元模型,获得了环境变温引起的结构应力,实现了从热分析到结构应力的分析.然后,利用健康监测系统记录的应变时程数据,考察车辆荷载和环境变温所引起的应变特征的差异,提取和分离出由环境变温和车辆荷载引起的应变时程,并与模拟得到的应力时程加以对比和相互验证,在此基础上利用连续介质损伤力学理论分析车辆荷载单独作用以及车辆和环境变温交互作用所引起的桥梁累积损伤.结果表明:提出的损伤分析流程可实现桥梁关键部位在考虑环境变温和车辆荷载两种因素作用下的损伤分析.环境变温单独作用所引起的疲劳损伤很小,基本可以忽略,但两者交互作用所引起的结构疲劳损伤相对于车辆单独作用下的损伤有显著差异.在服役初期环境变温的作用并不显著,随着疲劳损伤的不断增加,这种交互作用对结构疲劳损伤累积的影响会愈发明显,即环境温度变化引起的荷载会加速结构服役中后期疲劳损伤的累积速率,进而对结构疲劳寿命产生显著影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号