首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
天然气管道发生泄漏会造成一定的危险性,很有可能造成爆炸等危害性极大的事故。通过对泄漏气体危险边界的研究,可以确定天然气泄漏扩散形成的危险区域。本文通过利用Fluent模拟软件对泄漏时间、泄漏孔径和障碍物三种情况进行模拟分析,分析不同工况情况对天然气泄漏扩散的影响,为处理泄漏事故提供理论依据。  相似文献   

2.
为了探究由集成灶内部微量泄漏导致的液化石油气(liquefied petroleum gas,LPG)积聚及燃爆风险,应用计算流体力学软件FLUENT,对集成灶LPG微量泄漏扩散过程进行数值模拟。根据LPG的爆炸极限确定LPG泄漏后集成灶内部的危险区域,模拟结果表明:集成灶内部的LPG浓度分布具有不均匀性;泄漏速率越快,最终危险区域占比越高;上层流场增加通风口将显著改善集成灶内部LPG积聚情况。模拟实验得到了集成灶内部LPG微量泄漏扩散规律,并分析了泄漏积聚的改善措施,为预防集成灶燃爆事故发生和结构的设计改进提供了参考依据。  相似文献   

3.
高含硫天然气集输管道泄漏扩散数值模拟   总被引:12,自引:2,他引:10  
利用CFD软件FLUENT对高含硫天然气集输管道破裂泄漏后的甲烷、硫化氢的扩散进行了数值模拟.结果表明,受重气扩散时沉积效应的影响,高含硫天然气泄漏扩散时近地面的横向污染范围比普通天然气更大,烟云高度明显降低.在自然风速影响下,随海拔高度的增加,危险气体向下风向偏移明显.压力为3.5 MPa、含硫化氢5%的高压天然气管道断裂泄漏2 min后,在环境风速影响下爆炸危险范围为下风向150~290 m,中毒范围为下风向0~270 m.山顶地形条件下的扩散规律与平地类似,山谷地形条件下硫化氢将发生沉积而不利于扩散.  相似文献   

4.
高含硫天然气集输管道泄漏扩散数值模拟   总被引:3,自引:0,他引:3  
利用CFD软件FLUENT对高含硫天然气集输管道破裂泄漏后的甲烷、硫化氢的扩散进行了数值模拟.结果表明,受重气扩散时沉积效应的影响,高含硫天然气泄漏扩散时近地面的横向污染范围比普通天然气更大,烟云高度明显降低.在自然风速影响下,随海拔高度的增加,危险气体向下风向偏移明显.压力为3.5 MPa、含硫化氢5%的高压天然气管道断裂泄漏2 min后,在环境风速影响下爆炸危险范围为下风向150~290 m,中毒范围为下风向0~270 m.山顶地形条件下的扩散规律与平地类似,山谷地形条件下硫化氢将发生沉积而不利于扩散.  相似文献   

5.
基于计算流体力学(CFD)的重气扩散模型,以氯气为例,研究在风速和障碍物大小不同的情况下,氯气连续泄漏后扩散过程的运动特征与浓度分布信息,利用Unity3D软件进行扩散过程模拟.以毒性负荷浓度分布及变化特征为依据,可对扩散区域进行伤害等级划分,为泄漏事故发生时人员疏散和逃生路线提供优选方案支持.  相似文献   

6.
厂区天然气泄漏扩散的数值模拟研究   总被引:1,自引:0,他引:1  
根据危险性气体空间泄漏扩散的特点,对厂区天然气等危险性轻质气体泄漏扩散运动进行了数值模拟,着重研究了大气风向风速、泄漏射流方向和泄漏时间对危险性轻质气体(天然气)空间泄漏扩散浓度场和危险性区域的影响.其中大气主导风的风速对气体扩散浓度和扩散危险性区域有很大的影响,如等值线图模拟的条件下,在x方向上,风速v=0.5 m.s-1比v=5.0 m.s-1条件下危险性区域大155 m.  相似文献   

7.
为了降低天然气管道泄漏对环境造成的危害,采用FLUENT软件对高压天然气管道微量泄漏后甲烷扩散特性进行数值模拟,模拟了非稳态时甲烷浓度分布情况;探究不同管道压力和泄漏方式以及不同时间下天然气泄漏扩散过程的变化规律,并通过甲烷浓度分布图分析天然气的扩散特性和区域。结果表明:管内压力越大,甲烷扩散区域越大;泄漏方式为细缝泄漏时,扩散范围就相对小孔泄漏较大;甲烷泄漏出去的扩散浓度变化在前几分钟内就已达到稳定。  相似文献   

8.
探究室内危险性气体泄漏后的扩散特性及危害区域的影响,采用CFD软件FLUENT对室内自然通风条件下CO2连续泄漏扩散浓度的变化过程进行了数值模拟,研究CO2扩散过程的浓度场分布和危害区域变化规律,并比较CO2连续泄漏的风洞实验结果与数值模拟结果。结果表明:CO2在重力的作用下,泄漏后向空间的下方扩散,形成气体积聚,浓度逐渐延长,梯度变化较大,出现分层现象,并形成危害区域。随着时间的延长,室内各点的浓度增加,危害区域逐渐变大,并向上方移动;实验数据和模拟结果吻合较好,证明FLUENT可以较准确地模拟室内CO2的扩散过程。  相似文献   

9.
多源重气泄漏扩散模拟研究   总被引:1,自引:0,他引:1  
由于重气效应的存在,重气的泄漏和扩散的危险性较之轻气更为严重.在单源SLAB模型的基础上发展了多源重气扩散模型,并对单源和多源重气在连续泄漏和瞬时泄漏两种泄漏模式下的扩散都进行了模拟研究.以氯气泄漏为研究算例,计算得到了相应条件下下风向的时均浓度分布情况,结合毒性标准给出了不同毒性水平下的事故后果影响范围,从而可以为应急救援和疏散决策制定提供理论指导.  相似文献   

10.
设计海上重气平板-高斯烟羽扩散模型,其中平板模型用在重气沉降阶段,高斯烟羽模型用在重气湍流扩散阶段,并设计虚拟源将两者结合.同时,对海洋环境下的模型参数进行优化,包括风速、泄漏源有效高度以及扩散参数等,将调整后的参数输入模型,对事故区域重气浓度定量可视化.结果表明,事故点处,重气以8 m/s的风速向东北方向扩散;在下风向98 m处等浓度曲线以内为爆炸限度;在转折点31 m处,两模型衔接基本吻合.经专家实地检测,以(100m,0.0025 kg/m~3)为校正点,校正后的模型仿真与当时扩散浓度点基本吻合.因此,该模型可对重气泄漏扩散浓度区域可视化,并为之后应急救援等提供技术支撑.  相似文献   

11.
在高含硫天然气管道中,泄漏事故的风险较高,一旦事故发生,将对周围建筑和居民安全构成严重威胁。本研究聚焦于含5%硫化氢(H2S)的天然气管道,利用计算流体力学方法对水平泄漏扩散进行了数值模拟。特别研究了风速对泄漏口上游建筑各楼层硫化氢体积分数的影响。主要发现包括:(1)通过在仿真的房屋模型中各楼层设置监测点,观察到随着楼层增高,H2S气团扩散至房间的时间显著缩短。(2)随着风速的变化,位于高层(第11层至第24层)的房间内H2S气团扩散时间随风速的增加而减少。而对于低层(第1层至第10层)的房间,在风速低于9 m/s时,H2S气团扩散时间随风速增加而延长;但当风速超过9 m/s时,扩散时间随风速增加而缩短。这些结果为高含硫天然气管道泄漏事故的应急响应和安全管理提供了重要参考。  相似文献   

12.
王俊  封辉  高琦  王鹏 《科学技术与工程》2020,20(33):13660-13666
针对不同因素对管道泄漏工况的影响进行了模拟研究。管道的铺设方式一般为埋地铺设,长时间埋地管道会因为外力破坏或管道自身老化、腐蚀穿孔等因素造成管道泄漏。管道泄漏时会造成重大压力损失和管道流体的损失,管道大孔泄漏后容易在地面上被检测出来,小孔泄漏不容易被检测出来。因此采用数值模拟方法,通过模型简化,同时考虑计算精度和计算成本,建立了埋地管道小孔泄漏扩散模型。分别研究泄漏压力、泄漏孔径、管道埋深、土壤性质、环境温度、泄漏孔形状和障碍物等因素对埋地管道泄漏扩散的影响。  相似文献   

13.
刘堃 《北京理工大学学报》2012,32(2):212-215,220
为了解决化工企业中常见的危险化学品泄漏问题,以河南神马尼龙化工厂苯储罐区为例,在3个基本假设条件下,运用重气扩散模型和湍流模型,对苯储罐泄漏事故过程进行模拟和浓度云图分析,从而进行安全区域判定.研究结果表明,苯泄漏后在事故源方向沿下风向形成烟团扩散带,处于混合层的烟羽则会以相等的速率向垂直和水平方向扩散;对与不同风速下的泄漏情况,应采取相应的防护措施.研究结果实现了可视化仿真和现场数据管理功能,为处理苯泄漏事故提供了技术支持.  相似文献   

14.
氯气管道泄漏源项识别反演问题   总被引:1,自引:0,他引:1  
 在突发氯气泄漏时,及时充分地掌握泄漏源的源项信息,是科学预测氯气泄漏扩散事故的难点之一,也是控制和管理氯气泄漏事故的一项重要基础性工作。围绕泄漏源反演问题,对有障碍物环境下氯气管道泄漏扩散后的源项反演进行了数值模拟。采用基于Bayes推断理论的MCMC抽样方法,结合某氯乙酸生产厂区生产装置布局及氯气泄漏的扩散模型,对氯气泄漏源的空间位置和氯气泄漏强度等重要参数进行反演。结果展示了泄漏源项信息,通过结果检验得出参数的反演结果均在真实数值范围之内。  相似文献   

15.
针对管道中天然气的泄漏,尤其是含硫集输管道的泄漏将对周围环境造成极大的威胁,对平坦地区含硫化氢天然气管道泄漏扩散进行了数值模拟。模拟分析发现:静风条件下,天然气在大气中自由扩散稳定后,压力、速度和浓度分布基本对称,喷口附近、喷口垂直向上区域以及接近地面区域的硫化氢浓度很高,属于高危险区域;有风条件下,气体扩散范围增大,风不仅对污染物起输送作用,还起稀释扩散作用,但在地面附近影响效果并不明显,而随高度的增加,其效果将不断增强;在无风情况下,喷射区域基本在泄漏口正上方,而有风时,喷射区域发生弯曲;危险区域随着风速的增大而减小,静风时,其范围最大。模拟得出天然气管道泄漏点外扩散的规律能够为实际安全生产和应急抢险提供较好的参考依据。  相似文献   

16.
城市建筑群环境有毒有害气体扩散数值模拟   总被引:1,自引:0,他引:1  
应用计算流体力学(CFD)原理和方法建立街区尺度点源泄漏扩散的数值模型,并经风洞试验结果验证其正确性.对街区建筑物扰动和两种来流风速(1.5 m·s-1,3.0 m·s-1)下近地面气云扩散过程及特性进行模拟与分析.结果表明:给定合适的计算参数,基于RNG k-ε模型和SIMPLE算法能够有效模拟复杂障碍物条件下有毒有害气体的扩散过程;近地面气云扩散受道路、建筑物布局和来流风速的影响明显,建筑物周围测点浓度同该处源距、方位、高度以及风向偏离程度存在密切联系;较大的来流风速加快气云水平输送,同时有利于浓度的稀释;泄漏停止后建筑物密集区间浓度稀释相对滞缓,可能对人群健康构成威胁.  相似文献   

17.
液化石油气(LPG)是常见的易燃易爆化学品,采用PHAST程序中的UDM模型验证数值模拟的可行性,以控制变量法研究同一泄漏孔径下温度、环境和泄漏口方向对事故后果的影响规律.结果表明,随着温度升高,LPG泄漏扩散距离变远、闪火影响区域扩大,但喷射火辐射量随之降低,特别是在150~200 m距离时衰减明显;表面粗糙度值越低,LPG泄漏扩散越远,爆炸冲击波传播的较远,但表面粗糙度对喷射火热辐射强度影响较小;泄漏口方向对事故的影响较大,泄漏口水平方向的泄漏距离最远,泄漏口方向垂直向下时,容易形成液池,泄漏口向上时,扩散距离以及闪火和喷射火的影响范围最小.   相似文献   

18.
为了研究天然气输送管道发生泄漏后气体的扩散规律,以长庆油田第五采气厂输送管道为研究对象,利用FLUENT软件进行数值计算。根据现场的实际情况,建立了数值模拟的物理模型,设置合理的边界条件,得到了不同风速下天然气扩散规律。结果表明:在静风条件下,气体的浓度和速度分布基本上呈对称分布。在风力的作用下,气体的浓度场向下风向发生了明显的偏斜,当风速为3 m/s时,喷射气流大约在泄漏口上方50 m处发生偏斜,当风速为5 m/s时,喷射气流大约在泄漏口上方35 m处发生偏斜,当风速为10 m/s时,喷射气流大约在泄漏口上方15 m处发生偏斜,而且随着风速的增大,射流偏离竖直方向角度也增大。同时风速越大,硫化氢对人体有危害的面积越小。  相似文献   

19.
针对冷库液氨泄漏事故,采用高斯烟羽模型进行分析,并分别针对城市和乡村不同的地表粗糙度情况分析下风向地面中心线的扩散质量浓度和危害区域。通过matlab数值模拟表明,发生在城市的液氨泄漏的下风向地面扩散质量浓度的最大值高于乡村,但是危害区域比发生在乡村的小;通过模拟,划分了不同的危害区域,可以为发生在城市和乡村不同的地域情况下的人员疏散和现场警戒提供理论依据。  相似文献   

20.
陈兵  赵琼  郭焕焕 《科学技术与工程》2022,22(19):8313-8319
长输管道中的超临界CO2流体一旦发生泄漏并扩散到周围环境中,将会造成极大的经济损失并对生命体构成潜在的生理危害。文章针对不同土壤孔隙率下埋地超临界CO2管道发生小孔泄漏初期的扩散规律展开研究。根据我国土壤特点选用0.35、0.45、0.55、0.65四种孔隙率,结合我国国内某油田超临界CO2埋地管道的输送工况参数,依据相关的基础理论建立三维土壤-管道模型,使用FLUENT专业模拟软件,模拟埋地CO2管道发生泄漏初期CO2在不同孔隙率的土壤中扩散情况,通过分析计算得到其以均匀扩散为主的扩散规律。以所选最大孔隙率为例,以5%为CO2危险浓度,确定以泄漏口为中心的2 m范围内的地表为危险区域,相关结论为施工人员提供技术参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号