首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
针对宝钢1580热连轧机精轧机组支承辊油膜轴承锥套使用中存在的各类损伤问题,利用三维弹塑性接触问题边界元法定量分析了轧机油膜轴承锥套与轧辊辊颈过盈装配过程中的变形和载荷特性,得出了装拆过程中不同的胀型压力和轴向推力条件下锥套接触压力延母线方向的变化规律,同时锥套端部和密封槽附近接触压力峰值的存在是加速锥套损伤及降低其使用寿命的重要原因。最后,从锥套结构和装配工艺等方面提出了具体的改进措施。  相似文献   

2.
油膜轴承的锥套与轧辊辊颈采用弹性结合方式联结,具有载荷传递平稳的优点。然而,由于锥套与辊颈利用液压胀形实现过盈装配,使得接触面间在装配过程中发生表面损伤。为确定锥套损伤形式与装配过程的力学行为之间的关系。本文通过模拟试验,利用分形理论,揭示磨损表面形貌的几何特征,探讨接触应力场对不同表面损伤形式的影响机理。  相似文献   

3.
为求解配备热装组合式支承辊的板带冷轧机辊系弹性变形,将辊套和辊芯进行分段离散,并考虑辊套装配凸度以及辊套与辊芯之间的弹性压扁,根据工作辊、辊套及辊芯之间的变形协调以及力平衡条件,采用影响函数法推导出热装组合式支承辊辊系弹性变形数学模型,并编程求解辊系弹性变形,分析不同弯辊力、窜辊量以及带材宽度对辊系弹性变形的影响.实验结果表明:随着工作辊弯辊力和板宽度的增加,组合式支承辊辊间压扁产生由中间凸到中间凹的变化,且横向分布趋于均匀,随着工作辊窜辊量的增加,辊间压扁出现非对称分布,且非对称程度逐渐增大,窜辊量为100 mm时左右两端的辊间压扁差值超过30 μm;弯辊力变化和窜辊量对组合式支承辊挠度的影响分别不超过0.7 μm/(10×104 N)和0.8 μm/100 mm,带材宽度变化对挠度的影响达1.8 μm/100 mm.  相似文献   

4.
轧机油膜轴承的长寿可靠性,不单是轴承结构、流体润滑冷却、密封以及安装到位等自身问题.目前存在的规律性偏载难题,足以证明单靠油膜轴承自身结构是不可能的.适应空载的轧机辊系,在重载下的微尺度行为,完全破坏了辊系的静定条件而成为超静定辊系,导致无法维持支承辊辊颈和轴承座沿轴向均载的条件,亦即衬瓦和锥套外表面沿轴向不能保持等油膜厚度的自位条件,偏载是不可避免的.轧机辊系微尺度行为是规律性且可控的,非"随机现象".无键连接的弹性结合锥套也存在微尺度行为,等过盈弹性结合锥套可靠性低,必然导致频繁的粘结事故.  相似文献   

5.
文章对目前锂电池极片轧辊利用小辊颈结构减少和控制轧辊挠度变形的方法提出质疑。在建立轧辊参数模型的基础上,首先通过理论分析的方法求解对小辊颈结构施加矫正拉力前、后轧辊的变形挠度大小;然后利用数值模拟的方法对其进行静态模拟仿真,模拟不同工况下轧辊的变形与应力分布;分析了在施加矫正拉力前、后其轧制区的变形分布与数值大小,得出施加拉力产生的最大矫正变形量所占比例不超过原变形量的0.7%。采用理论分析与数值模拟相结合的方法得到的结果证明,通过增加小辊颈结构改善轧辊变形的方法在实施时既增加材料成本又导致机构繁琐,并且不能有效地减少和控制轧辊的挠度变形,因此,增加小辊颈结构施加拉力是没有必要的。该结论可以为极片轧辊的结构设计提供一定的参考。  相似文献   

6.
利用非线性热力耦合有限元方法,对浇铸过程中结晶辊辊套的温度场分布进行了研究,并同时计算出了结晶辊的热变形.给出了浇铸稳定阶段的结晶辊温度场分布和热变形规律;分析了浇铸速度对结晶辊温度场和热变形的影响.通过分析得出,在浇铸稳定阶段结晶辊温度只在表层区域发生周期性变化,内部保持基本稳定,浇铸速度越低,周期性变化幅度越大.  相似文献   

7.
针对铸轧辊套在复杂工况下承受较大的耦合应力时容易产生疲劳磨损和表面开裂问题,应用AN-SYS软件建立了铸轧辊辊套二维模型,得到了辊套的温度分布规律;通过间接法将热分析结果导入结构模型中,得到了辊套在热应力、过盈装配应力和铸轧力共同作用下的应力分布规律,以及不同的铸轧温度和辊套厚度对辊套应力值大小的影响。结果表明:辊套厚度大于25mm和温度为500℃的工况对延长辊套寿命有利。  相似文献   

8.
为定量分析组合式支承辊热装工艺参数、辊套表面状态及材料参数对热装组合式支承辊性能的影响,推导出了热装配合面径向应力、等效应力计算公式、热装过盈量范围公式以及过盈配合面可传递扭矩计算公式,分析了辊套厚度、辊套外表面温度、配合面摩擦系数以及轧制传动方式与组合式支承辊热装最小和最大过盈量之间的定量关系,并得到了辊套厚度、热装过盈量及其结合面摩擦系数对结合面径向应力、等效应力以及可传递扭矩的影响规律,基于ABAQUS软件模拟了热装过程,得到了不同过盈量、不同辊套厚度时的径向应力和等效应力,并与解析模型结果进行了对比。结果表明:提高辊套材料的屈服强度、增大配合面摩擦系数、降低轧制过程辊套外表面温度不但可以明显降低热装组合式支承辊所需最小过盈量并提高热装允许最大过盈量,而且可以增大过盈配合面可承受转矩,对提高组合式支承辊制造技术水平并改善其性能具有重要实际意义。  相似文献   

9.
双辊连续铸轧是一种高效制备金属薄带坯的先进技术.在双辊连续铸轧过程中,铸轧辊套起结晶器与热轧辊双重作用,直接完成结晶凝固与热轧变形过程,其使用性能与其热应力场密切相关.根据铸轧辊套温度场的特点,运用Galerkin方法,得到了铸轧辊套温度场的近似分析解;对铸轧辊套的热应力场进行了数学描述,并应用Airy应力函数法,获得了铸轧辊套热应力解析模型.图1,参12.  相似文献   

10.
针对抽油机曲柄销松动的问题,提出了相应的改进措施.阐述了改进曲柄锥套磨削质量的技术设计,保证了锥套与由柄销锥面的接触面积,有效地防止了抽油机在运转过程中出现曲柄销的松动.  相似文献   

11.
油膜轴承是板带轧机的核心部件,锥套是油膜轴承中重要的径向承载元件之一,其键槽、壁厚的分布对承载能力、运转精度有直接影响。应用流体润滑理论、边界元法,通过对锥套关键部位进行受力分析,可对锥套结构的优化设计提供依据。  相似文献   

12.
通过对轧机油膜轴承锥套载荷分布的模拟实验研究, 给出了轧机油膜轴承锥套载荷测试的新方法.为精轧机提高轴承寿命的研究工作提供了可靠的实验手段与试验数据, 实验结果对大型轧机油膜轴承锥套损伤机理研究具有重要参考价值.  相似文献   

13.
冷连轧第5机架轧制力模型   总被引:6,自引:2,他引:4  
在冷连轧轧制过程中,综合考虑轧件、轧辊的弹性变形和轧件的塑性变形,将轧件的受力变形区分为:入口弹性变形区、塑性变形区和出口弹性变形区·采用数值积分法,迭代计算入口弹性变形区和塑性变形区的轧制力,用出口区单位压力分布曲线围成的面积和轧件宽度的乘积近似计算出口弹性变形区的轧制力,两者求和即得到第5机架轧制力计算模型·用现场记录的不同钢种和规格的多组数据进行仿真计算,结果表明,该模型满足冷连轧生产轧制力预计算所需的精度要求·  相似文献   

14.
使用切片方法对单个滚子/滚道接触对进行数值计算,并以此为基础对圆锥滚子轴承进行总体接触受力和变形分析.根据变形协调和力平衡条件,建立了对轴承总体进行接触分析的数学模型,该模型是一个方程组,通过数值方法求解该方程组,完成对轴承总体的分析与计算.以文中方法为基础,编写了对圆锥滚子轴承进行受力分析的软件,并以实例进行了验证.  相似文献   

15.
针对某CVC带钢冷连轧机启动阶段支持辊油膜轴承静压承载能力不足的问题,应用流体润滑理论,建立了轴承倾斜工作下静压承载能力的全润滑系计算模型,分析了轧机压下倾斜、油泵功率和节流器液阻对轴承静压承载性能的影响. 计算结果表明,压下倾斜过大会造成轴套与衬套的轴线出现倾斜,进而导致轴承的静压承载能力急剧下降,是造成轴承寿命缩短、连轧机启动频繁失败的根本原因. 在实际生产中,限定了轧机压下倾斜设定值上限,增大了润滑油黏度,从而有效提高了轴承的承载能力,机组启动成功率显著提高.  相似文献   

16.
运用材料力学、弹性理论对四辊可逆冷轧机辊系传动的受力和轧制过程轴向力进行分析,确定工作辊传动轴保险销时常断裂的主要原因是扭矩剪切力,而辊系虽然存在轴向力,但通过事先管理与严格现场操作是可以控制的.  相似文献   

17.
为揭示机体弹性变形对曲轴主轴承润滑特性的影响,在考虑整机体和曲轴弹性的条件下,建立发动机曲柄连杆机构多柔体动力学模型,耦合基于质量守恒边界条件的广义雷诺方程和Greenwood/Tripp接触模型,分析机体弹性变形对曲轴主轴承润滑特性的影响。结果表明:与刚性机体相比,计入机体弹性变形后,各主轴承的润滑特性随曲轴转角的变化趋势与将缸体处理为刚性时基本一致;润滑油平均端泄量和总摩擦功耗在一个工作循环内均变化较小;润滑油最小油膜厚度、最大油膜压力和轴承的最大粗糙接触压力在一个工作循环内的某些时刻变化明显。  相似文献   

18.
通过采用边界元法对高线轧机压下垫块改造模型进行力学分析,开发设计一种适合测量高线轧机油膜轴承动态载荷特性的简易装置。该装置有利于实现油膜轴承载荷特性的在线监测控制。  相似文献   

19.
利用三维接触问题的边界元法对大型板带轧机多列轴承载荷分布进行了全面研究 ,发现导致该轴承破坏的主要原因是多列轴承严重偏载。通过重载机构学理论分析 ,发现原轧机的轧辊辊系约束机构不合理。针对宝钢 2 0 5 0热轧精轧机的具体结构 ,研制出轴承自适应均载装置。该装置大大缓解了多列轴承的偏载 ,可以显著提高轧机轴承寿命。理论分析和现场试验结果充分验证了自适应均载装置的正确性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号