首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
化学液相气化沉积C/C复合材料的性能研究   总被引:1,自引:0,他引:1  
在不加和加入催化剂的条件下,采用化学液相气化沉积工艺分别在1000℃-10 h及900℃- 8 h内制备出密度为1.67 g/cm~3的大尺寸(φ110 mm×25 mm)C/C复合材料.不加催化剂制备的C/C复合材料主要以粗糙层为主,锥状结构明显,呈脆性断裂模式;在加入催化剂的条件下,由于催化荆的存在能够增加C沉积时的形核点,降低C沉积温度,缩短沉积时间,所以制备的C/C复合材料均匀性增加,组织结构主要为光滑层和各向同性组织,断裂方式为台阶式假塑性断裂.热处理后两种材料的弯曲强度和模量都降低,石墨化度增加,而不加催化剂制备的复合材料的力学性能和石墨化度都高于加入催化剂条件下制备的复合材料.  相似文献   

2.
C/C和C/C-SiC复合材料的氧化及烧蚀性能   总被引:4,自引:0,他引:4  
用液相浸渍.裂解聚硅烷工艺制备了C/C-SiC复合材料,对比了C/C与C/C-SiC复合材料的氧化及烧蚀性能,用扫描电镜(SEM)和X射线衍射(XRD)分析了氧化与烧蚀前后的微观结构及物相变化.结果表明:C/C-SiC复合材料使C/C复合材料的氧化起始温度从500℃提高到700℃;在600℃和700℃恒温氧化条件下,C/C-SiC复合材料比C/C复合材料的氧化速率分别降低38%和47%,失重率分别降低35%和47%;C/C-SiC复合材料的耐烧蚀性能优于C/C复合材料.  相似文献   

3.
测试了几组典型的不同体积密度和石墨化度的C/C复合材料洛氏硬度值,研究了C/C复合材料的体积密度和石墨化度与其硬度特性的关系.结果表明:相同石墨化度的C/C复合材料洛氏硬度随其体积密度的增加而增加,相同体积密度的C/C复合材料洛氏硬度随其石墨化度的增加而降低;C/C复合材料体积密度对硬度的影响随其石墨化度的增加而减小;对体积密度为1.75~1.85g/cm3的C/C复合材料,可据其洛氏硬度的范围大致判断其石墨化度的范围;对一定体积密度和热处理温度的C/C复合材料,可通过洛氏硬度判断基体炭的微观结构特点.  相似文献   

4.
C/C复合材料因其特异性能在航空航天、武器装备等领域得到了广泛应用.但其制备过程中致密化周期很长导致成本居高不下,限制了C/C复合材料在众多领域的应用.采用定向气流温度梯度气相渗透(TG-CVI)快速致密化方法制备盘状C/C复合材料,并对其致密化行为和致密化工艺进行研究.结果表明:定向气流TG-CVI法能有效抑制气相沉积过程中C/C复合材料表面"结壳"现象,实现盘状C/C复合材料的逐层快速致密化,是制备盘状C/C复合材料较为理想的工艺.在1 080℃下,只需沉积67 h,C/C复合材料的密度就可达到1.8 g/cm~3,热解碳结构全部为粗糙层结构(RL).  相似文献   

5.
采用基体改性技术将ZrC引入C/C复合材料中,制备一种新型的C/C-ZrC复合材料.利用X线衍射仪、扫描电镜及能谱等分析手段,研究材料的形貌和结构,并采用三点弯曲试验研究材料的力学性能,讨论ZrC质量分数对复合材料断裂行为的影响.研究结果表明:引入的ZrC主要以纳米颗粒的形式分布在材料中;随着ZrC质量分数的升高,C/C-ZrC复合材料抗弯强度逐渐降低,当ZrC质量分数为36.64%时,C/C-ZrC复合材料断裂过程中发生脆性断裂,材料断裂模式转变的原因主要与ZrC质量分数升高引起的纤维损伤及石墨化度提高综合作用有关;经2 000℃的石墨化处理后,断裂过程中材料的脆性行为变得更加明显.  相似文献   

6.
研究了反应气体浓度对微正压等温化学气相沉积制备的C/C复合材料密度和显微结构的影响,结果表明:在微正压和900 ℃的沉积条件下,用丙烯作为碳源、针刺毡作为预制体,氮气与丙烯的气体流量比为25∶1,经过105 h沉积后,C/C复合材料的密度达到1.52 g/cm3;通过偏光显微镜观察分析发现试样外部除了围绕在炭纤维周围的光滑层外,还沉积了大量的再生结构热解炭,试样内部主要以光滑层结构为主.图7,参12.  相似文献   

7.
化学液相沉积法(简称CLVD)是一种快速致密C/C复合材料的有效工艺.利用自行研制的沉积装置,以碳毡为预制体,研究了其在不同工艺下的致密化行为.并对复合材料的密度、孔隙率、致密化速率及显微形貌与结构进行了分析.结果表明:自行研制的沉积装置可实现C/C复合材料的快速制备,在1 050℃下经1h沉积后制备出密度近1.6g/cm~3的C/C复合材料,致密化效果显著.沉积的热解碳以碳纤维为轴形成同轴层状结构,沉积温度升高,致密化速率加快,热解碳由光滑层向粗糙层过渡,并向有序的石墨结构进行转化.  相似文献   

8.
C/C复合材料的抗氧化研究现状   总被引:1,自引:0,他引:1  
目前提高C/C复合材料抗氧化能力的方法有CVI工艺法,浆料浸渍-热解工艺法,涂层法;抗氧化涂层的制备方法主要有化学气相沉积法(CVD),固态渗透法,涂刷法,等离子喷涂法,溶胶-凝胶法;抗氧化涂层有两种典型结构:单层涂层和复合涂层。指出了C/C复合材料高温氧化保护研究方向的发展趋势及前景。  相似文献   

9.
以液化气为碳源前驱体,氮气为稀释气体,采用定向脉冲气流TG-CVI法,对初始密度为0.14 g·cm-3的普通碳毡进行致密化处理.研究在不同试验条件下C/C复合材料的致密化过程和密度分布,借助偏光显微镜观察其微观组织,扫描电子显微镜观察其断口形貌,采用三点弯曲法测定C/C复合材料的抗弯强度.结果表明:在热端温度为1 080 ℃、脉冲压力为-3~0 kPa的条件下,经70 h致密化,C/C复合材料的表观密度可达1.836 g·cm-3,且密度分布均匀;组织为粗糙层(RL)和光滑层(SL)的混合型组织;试样断口形貌呈渐变的锯齿状分布,纤维以拔出为主,表现为假塑性断裂特征,抗弯强度为83.91 MPa.  相似文献   

10.
毡体密度对C/C复合材料增密和结构的影响   总被引:3,自引:0,他引:3  
用液化石油气作碳源、针刺炭毡作增强体,在自行设计的多元耦合物理场CVI炉中制备炭/炭(C/C)复合材料,在毡体内部设置石墨纸作发热体,并研究了一次性沉积15 h后,毡体密度对增密速度和材料结构的影响.采用偏光显微镜研究了沉积炭的显微结构,用XRD均峰位法研究了材料的石墨化度,并用排水法测量材料的表观密度.研究表明, CVI工艺增密速度随毡体密度的增加呈下降趋势,而较高的毡体密度有利于获得较高石墨化度的高织构的粗糙层结构(RL)热解炭.图4,参15.  相似文献   

11.
纤维体积分数对炭/炭复合材料力学性能的影响   总被引:2,自引:0,他引:2  
以40%,30%和25%3种不同纤维体积分数的针刺整体毡为坯体,经3次化学气相浸渗后制备C/C复合材料;测定其未经热处理与经不同温度热处理后的石墨化度,抗弯、抗剪、垂直与平行抗压强度;在偏光下观察其微观结构;采用扫描电子显微镜对其断口形貌进行观察;研究纤维体积分数与C/C复合材料的力学性能的关系及不同热处理条件下C/C复合材料的断裂机理.研究结果表明:在不同热处理状态下,当纤维体积分数为30%时炭/炭复合材料的抗弯、抗压和抗剪强度均最高;经热处理后的试样,其力学性能降低,断裂方式由脆性断裂转变为韧性断裂;热处理温度越高,其力学性能降低的程度越大.  相似文献   

12.
为了缓解C/C复合材料脆性,利用勃姆石溶胶对单向碳纤维预制体进行处理,在纤维表面制备了Al2O3涂层.使用自制的热梯度化学气相沉积(TG-CVI)设备对预制体进行致密化,得到致密的C/C复合材料.通过高温热处理进一步调节界面的结合强度和基体碳的石墨化程度.利用排水法测试复合材料的密度,万能材料试验机测试其拉伸性能,采用可视化石墨烯片层技术(VGT)对试样进行处理,使用偏光显微镜(PLM)、扫描电子显微镜(SEM)、X-射线衍射(XRD)分别研究复合材料的微观组织、界面和断面形貌、以及物相组成.结果表明:涂覆Al2O3涂层的C/C复合材料在沉积后期转变为粗糙层(RL)织构.经过高温热处理后,碳基体的石墨化程度提高,改变了C/C复合材料的断裂机制.由复合材料最初的脆性断裂向拟延性转变,延伸率提高.C(f(Al2O3))/C-3样品的峰值应力达到了77.3 MPa,延伸率达到了15%.  相似文献   

13.
填充剂对二维C/C复合材料室温力学性能的影响   总被引:1,自引:0,他引:1  
主要研究了在CVI法制备C/C复合材料工艺中,热解炭粉、石墨粉、SiC粉填充二维C/C复合材料的力学性能变化规律,详细分析了加入填充剂前后材料的弯曲强度、拉伸强度、模量及Ⅱ型层间裂纹扩展能的变化机理,研究结果表明:在C/C复合材料中加入这3种填料后均使材料的强度有所下降,但是采用石墨粉及热解炭粉填充二维C/C复合材料可以显著提高复合材料的层间结合性能,由于填充的热解炭粉与基体材料在分子及晶体结构上的相似性,加入热解炭粉填充C/C复合材料使层间结合性能提高最显著,强度损失也最小,并且使材料的弯曲断裂呈现脆性断裂特征。  相似文献   

14.
本文制备纳米SiC基体改性的SiC-C/C复合材料,利用X射线衍射技术、高分辨率透射电镜等研究SiC对碳材料的石墨化度的影响.纳米SiC能够显著促进碳基体材料的石墨化度,同时通过高分辨率透射电镜在纳米SiC颗粒周围观测到明显的石墨化结构,并且距离SiC越近,碳基体的石墨化程度越高.通过静态氧化实验研究SiC-C/C复合材料的抗氧化性能.结果表明,随着SiC加入量的增加复合材料的抗氧化性显著提高,纳米SiC在高温下生成较为均匀的SiO2保护层,覆盖在碳材料的表面,阻碍氧气与碳材料的接触,并且SiC含量越高,形成的保护层越厚,抗氧化能力越强.  相似文献   

15.
利用SEM断口形貌分析了现役航空刹车用C/C复合材料的结构和界面结合状况,探讨了其断裂机理,分析了化学气相沉积炭的沉积机理.结果表明:C/C复合材料的断裂以"弱界面断裂"为主.裂纹优先在基体炭、炭布层间或长纤维束和短纤维间的弱界面等薄弱环节处产生.当裂纹尖端扩展到基体炭中的微裂纹处时,裂纹扩展转向;当裂纹扩展到纤维时,取道纤维与基体炭间弱界面层向前扩展,纤维经历与基体炭脱粘、弯曲、拔出、断裂等过程,导致整个材料断裂.航空刹车用C/C复合材料中的CVD炭以粗糙层状结构为主,CVD过程包括碳氢气体热解、成核、炭化、沉积生长等过程,其中,成核以物理成核为主.图2,表1,参16.  相似文献   

16.
纤维增强复合材料以耐高温、高比强度等优点在航空航天领域得到广泛应用,为有效提高多孔复合材料沉积过程的可控性与均匀性,该研究提出一种基于双温区-双通道结构的双工艺化学气相渗透/沉积(chemical vapor infiltration/deposition, CVI/CVD)系统。基于装备设计-建造-理论-制备-优化的一体化研究思路,对该系统制备碳纤维增强碳基复合材料(C/C复合材料)进行工艺设计与优化研究。通过建立流动、传热和物质传递反应模型,分析了温度、速度、浓度对致密化过程的影响,其中降低沉积温度能够提高厚度方向的沉积均匀性,通过改变空间温度梯度能够实现沉积位置的控制,初始速度、浓度的匹配能够提高致密化效率。利用双工艺CVI/CVD系统对多孔复合材料进行两步法沉积模拟,验证了C/C复合材料沉积样件均匀性控制与工艺优化的可行性。  相似文献   

17.
热解炭结构对炭/炭复合材料摩擦磨损性能的影响   总被引:6,自引:1,他引:6  
通过控制化学气相沉积工艺条件,得到粗糙层、光滑层、过渡结构、各向同性等几种具有不同微观结构的热解炭.通过金相观察、石墨化度、摩擦磨损性能的测试,得出:热解炭的微观结构对炭/炭复合材料的摩擦磨损性能有较大影响;制动过程中形成的薄膜使摩擦因数降低;粗糙层结构的炭/炭复合材料石墨化程度高,摩擦因数高,线型平稳,且随着压力的增加,其力矩上升明显,是一种优良的摩擦材料;光滑层结构的炭/炭复合材料石墨化度低,摩擦因数低,磨损小.  相似文献   

18.
以炭布与炭纤维薄毡交替成叠层,采用针刺技术在垂直布面方向引入增强纤维,制成准三维预制体,在自行研制的热梯度CVI炉中制备了航空刹车用C/C复合材料;采用偏光显微镜研究了沉积炭的显微结构.研究结果表明该CVI炉可实现多试样同时沉积,且位于料柱不同位置的试样密度分布较均匀;对外径为110 mm,内径为45 mm,厚度为15~20 mm的试样,在80 h内,试样的平均密度可达1.60 g/cm3,炭的有效利用率可达27%;在料柱的不同位置以及同一试样中沿径向的不同位置,沉积炭的显微结构都有所不同;沉积炭的显微结构有粗糙层结构、带状结构以及光滑层结构;通过工艺参数的优化,可以得到以粗糙层结构为主的C/C复合材料.  相似文献   

19.
在氧化性气氛(21% O2 79% Ar)、不同拉应力下研究SiC涂层C/C复合材料在1 000 ℃和1 300 ℃的氧化失效行为;采用扫描电镜观察SiC涂层C/C复合材料氧化失效后的断口形貌.试验结果表明:当温度为1 000 ℃,拉应力由C/C复合材料拉伸强度的20%增加至50%时,SiC涂层C/C复合材料的应力氧化明显加剧,寿命由大于5.00 h缩短到2.92 h,应力对SiC涂层C/C复合材料的寿命有显著影响;当拉应力为C/C复合材料拉伸强度的50%,温度为1 000 ℃和1 300 ℃时,材料均在低温区断裂,应力氧化寿命分别为2.92 h和2.62 h,温度对应力氧化寿命的影响不明显;应力氧化失效以纤维的氧化失效为主,外加拉应力起促进作用.  相似文献   

20.
采用超声波渗硅技术,经化学气相沉积、硅化处理、浸渍/炭化增密和石墨化处理制备C/C-SiC复合材料.用偏光显微镜、扫描电子显微镜观测其微观组织结构,用X射线衍射仪进行物相分析,用MM一1000性摩擦磨损试验机检测C/C-SiC复合材料分别与C/C复合材料、30 CrSiMoVA钢和铁基粉末冶金材料组成摩擦副的摩擦性能.结果表明:C/C-SiC复合材料中只有C相和13-SIC相,C相的组成为炭纤维、沉积炭和树脂炭同时存在;C/C-SiC复合材料与铁基粉末冶金材料组成的摩擦副的摩擦性能优异,其摩擦因数为0.42,摩擦稳定性为85%,磨损值为3.9 μm/(次·面).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号