首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell-permeable phosphorescent probes enable the study of cell and tissue oxygenation, bioenergetics, metabolism, and pathological states such as stroke and hypoxia. A number of such probes have been described in recent years, the majority consisting of cationic small molecule and nanoparticle structures. While these probes continue to advance, adequate staining for the study of certain cell types using live imaging techniques remains elusive; this is particularly true for neural cells. Here we introduce novel probes for the analysis of neural cells and tissues: negatively charged poly(methyl methacrylate-co-methacrylic acid)-based nanoparticles impregnated with a phosphorescent Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP) dye (this form is referred to as PA1), and with an additional reference/antennae dye poly(9,9-diheptylfluorene-alt-9,9-di-p-tolyl-9H-fluorene) (this form is referred to as PA2). PA1 and PA2 are internalised by endocytosis, result in efficient staining in primary neurons, astrocytes, and PC12 cells and multi-cellular aggregates, and allow for the monitoring of local O2 levels on a time-resolved fluorescence plate reader and PLIM microscope. PA2 also efficiently stains rat brain slices and permits detailed O2 imaging experiments using both one and two-photon intensity-based modes and PLIM modes. Multiplexed analysis of embryonic rat brain slices reveals age-dependent staining patterns for PA2 and a highly heterogeneous distribution of O2 in tissues, which we relate to the localisation of specific progenitor cell populations. Overall, these anionic probes are useful for sensing O2 levels in various cells and tissues, particularly in neural cells, and facilitate high-resolution imaging of O2 in 3D tissue models.  相似文献   

2.
In aerobic organisms, oxygen is a critical factor in tissue and organ morphogenesis from embryonic development throughout post-natal life, as it regulates various intracellular pathways involved in cellular metabolism, proliferation, survival and fate. In the mammalian central nervous system, oxygen plays a critical role in regulating the growth and differentiation state of neural stem cells (NSCs), multipotent neuronal precursor cells that reside in a particular microenvironment called the neural stem cell niche and that, under certain physiological and pathological conditions, differentiate into fully functional mature neurons, even in adults. In both experimental and clinical settings, oxygen is one of the main factors influencing NSCs. In particular, the physiological condition of mild hypoxia (2.5–5.0% O2) typical of neural tissues promotes NSC self-renewal; it also favors the success of engraftment when in vitro-expanded NSCs are transplanted into brain of experimental animals. In this review, we analyze how O2 and specifically hypoxia impact on NSC self-renewal, differentiation, maturation, and homing in various in vitro and in vivo settings, including cerebral ischemia, so as to define the O2 conditions for successful cell replacement therapy in the treatment of brain injury and neurodegenerative diseases.  相似文献   

3.
Colonic inflammation is associated with decreased tissue oxygenation, significantly affecting gut homeostasis. However, the crosstalk between O2 consumption and supply in the inflamed tissue are not fully understood. Using a murine model of colitis, we analysed O2 in freshly prepared samples of healthy and inflamed colon tissue. We developed protocols for efficient ex vivo staining of mouse distal colon mucosa with a cell-penetrating O2 sensitive probe Pt-Glc and high-resolution imaging of O2 concentration in live tissue by confocal phosphorescence lifetime-imaging microscopy (PLIM). Microscopy analysis revealed that Pt-Glc stained mostly the top 50–60 μm layer of the mucosa, with high phosphorescence intensity in epithelial cells. Measured O2 values in normal mouse tissue ranged between 5 and 35 μM (4–28 Torr), tending to decrease in the deeper tissue areas. Four-day treatment with dextran sulphate sodium (DSS) triggered colon inflammation, as evidenced by an increase in local IL6 and mKC mRNA levels, but did not affect the gross architecture of colonic epithelium. We further observed an increase in oxygenation, partial activation of hypoxia inducible factor (HIF) 1 signalling, and negative trends in pyruvate dehydrogenase activity and O2 consumption rate in the colitis mucosa, suggesting a decrease in mitochondrial respiration, which is known to be regulated via HIF-1 signalling and pyruvate oxidation rate. These results along with efficient staining with Pt-Glc of rat and human colonic mucosa reveal high potential of PLIM platform as a powerful tool for the high-resolution analysis of the intestinal tissue oxygenation in patients with inflammatory bowel disease and other pathologies, affecting tissue respiration.  相似文献   

4.
The proliferation ability of satellite cells (considered the 'stem cells' of mature myofibers) declines with increasing age when cultured under standard cell culture conditions of 21% oxygen. However, actual oxygen levels in the intact myofiber in vivo are an order of magnitude lower. No studies to date have addressed the issue of whether culturing satellite cells from old muscles under more 'physiologic' conditions would enhance their proliferation and/or differentiation ability. Therefore, we analyzed satellite cells derived from 31-month-old rats in standard cultures with 21% O2 and in lowered (∼3%) O2. Under the lowered O2 conditions, we noted a remarkable increase in the percentage of large-sized colonies, activation of cell cycle progression factors, phosphorylation of Akt, and downregulation of the cell cycle inhibitor p27Kip1. These data suggest that lower O2 levels provide a milieu that stimulates proliferation by allowing continued cell cycle progression, to result ultimately in the enhanced in vitro replicative life span of the old satellite cells. Such a method therefore provides an improved means for the ex vivo generation of progenitor satellite cell populations for potential therapeutic stem cell transplantation. Received 20 April 2001; received after revision 28 May 2001; accepted 31 May 2001  相似文献   

5.
Summary Freshly isolated and cultured hepatocytes were analyzed by two-parameter flow cytometry. The combined analysis of DNA and cellular protein content allowed the contribution of ploidy classes and of subpopulations within a ploidy class to be defined. Analysis of hepatocytes during exposure to dimethylsulfoxide (DMSO), phenobarbital (PB), low oxygen tension (5% O2) or fetal calf serum (FCS), provided insight into the dynamic response of individual ploidy classes as a function of culture time. By analogy with the age-dependent ploidy shifts in vivo, hepatocyte-cultures shift towards adult animals during exposure to DMSO and towards young animals when cultured at low pO2 (4% O2). FCS and phenobarbital disturb this constitutive ploidy balance. FCS increased the 2 N cell population, where stem cells probably respond to the proliferative stimuli provided by growth factors in the serum. Phenobarbital affects the liver-specific 4 N hepatocytes, which agrees with effects seen in liver after exposure in vivo. It is suggested that drug-induced pathological alterations in ploidy in hepatocyte cultures could serve as indicators of compounds, such as liver tumor promoters, which interfere with cell differentiation in liver. The heterotypic cell-cell interaction of freshly isolated hepatocytes with isolated, in vitro cultured, rat liver epithelial cells in co-cultures proved to be a valuable concept in toxicity testing: aldrin epoxidase, an enzyme system involved in xenobiotic metabolism, was stabilized for more than two weeks. After exposure to the three chemicals, 2-acetylaminofluoren, procarbazine and cyproterone-acetate, a preferential toxicity for each compound and cell population was established. Thus heterotypic cell cultures can considerably increase the amount of information available from in vitro studies.The final concept, combining monitoring of cellular DNA (ploidy) and protein content in hepatocyte cultures during and after exposure to a given test compound at tissue oxygen tension with the heterotypic cell-cell interaction, would create a more in vivo-like culture system. This would enhance the predictability of hepatocyte cultures and contribute to a more widespread use of the test system and as a result help to reduce the number of whole-animal tests.  相似文献   

6.
Activation of mitogen-activated protein (MAP) kinase is essential for cyclin D1 expression and provides a link between mitogenic signalling and cell cycle progression. Hydrogen peroxide (H2 O2 ) activates MAP kinase; however, it is not known whether this leads to cyclin D expression. Sustained expression of cyclin D1 and D2 was observed when Her14 fibroblasts were incu-bated with 3 mM or higher H2 O2 concentrations. Similar results were obtained when cells were incubated in the presence of serum (FCS). However, the sustained expres-complex sion of cyclin D1 and D2 upon H2 O2 treatment was not due to the MAP kinase pathway, because MAP kinase kinase inhibitors did not inhibit cyclin D expression. Furthermore, cyclin D1 and D2 levels remained constant even after addition of a protein synthesis inhibitor, indicating that the effect of H2 O2 was not due to induction of protein synthesis. These results indicate that H2 O2 reversibly inhibits the ubiquitin-proteasome dependent degra-dation of cyclin D1 and D2, probably by transiently in-hibiting ubiquitination and/or the proteasome. Received 12 March 2001; received after revision 5 April 2001; accepted 9 April 2001  相似文献   

7.
Primary neurons undergo insult-dependent programmed cell death. We examined autophagy as a process contributing to cell death in cortical neurons after treatment with either hydrogen peroxide (H2O2) or staurosporine. Although caspase-9 activation and cleavage of procaspase-3 were significant following staurosporine treatment, neither was observed following H2O2 treatment, indicating a non-apoptotic death. Autophagic activity increased rapidly with H2O2, but slowly with staurosporine, as quantified by processing of endogenous LC3. Autophagic induction by both stressors increased the abundance of fluorescent puncta formed by GFP-LC3, which could be blocked by 3-methyladenine. Significantly, such inhibition of autophagy blocked cell death induced by H2O2 but not staurosporine. Suppression of Atg7 inhibited cell death by H2O2, but not staurosporine, whereas suppression of Beclin 1 prevented cell death by both treatments, suggesting it has a complex role regulating both apoptosis and autophagy. We conclude that autophagic mechanisms are activated in an insult-dependent manner and that H2O2 induces autophagic cell death.  相似文献   

8.
Acclimatization to long-term hypoxia takes place at high altitude and allows gradual improvement of the ability to tolerate the hypoxic environment. An important component of this process is the hypoxic ventilatory acclimatization (HVA) that develops over several days. HVA reveals profound cellular and neurochemical re-organization occurring both in the peripheral chemoreceptors and in the central nervous system (in brainstem respiratory groups). These changes lead to an enhanced activity of peripheral chemoreceptor and re-inforce the central translation of peripheral inputs to efficient respiratory motor activity under the steady low O2 pressure. We will review the cellular processes underlying these changes with a particular emphasis on changes of neurotransmitter function and ion channel properties in peripheral chemoreceptors, and present evidence that low O2 level acts directly on brainstem nuclei to induce cellular changes contributing to maintain a high tonic respiratory drive under chronic hypoxia. (This study is part of a multi-author review.)  相似文献   

9.
Hypoxia refers to environmental or clinical settings that potentially threaten tissue oxygen homeostasis. One unique aspect of skeletal muscle is that, in addition to hypoxia, oxygen balance in this tissue may be further compromised when exercise is superimposed on hypoxia. This review focuses on the cellular and molecular responses of human skeletal muscle to acute and chronic hypoxia, with emphasis on physical exercise and training. Based on published work, it is suggested that hypoxia does not appear to promote angiogenesis or to greatly alter oxidative enzymes in skeletal muscle at rest. Although the HIF-1 pathway in skeletal muscle is still poorly documented, emerging evidence suggests that muscle HIF-1 signaling is only activated to a minor degree by hypoxia. On the other hand, combining hypoxia with exercise appears to improve some aspects of muscle O2 transport and/or metabolism.  相似文献   

10.
In both cardiomyocytes and HeLa cells, hypoxia (1% O2) quickly leads to microtubule disruption, but little is known about how microtubule dynamics change during the early stages of hypoxia. We demonstrate that microtubule associated protein 4 (MAP4) phosphorylation increases while oncoprotein 18/stathmin (Op18) phosphorylation decreases after hypoxia, but their protein levels do not change. p38/MAPK activity increases quickly after hypoxia concomitant with MAP4 phosphorylation, and the activated p38/MAPK signaling leads to MAP4 phosphorylation and to Op18 dephosphorylation, both of which induce microtubule disruption. We confirmed the interaction between phospho-p38 and MAP4 using immunoprecipitation and found that SB203580, a p38/MAPK inhibitor, increases and MKK6(Glu) overexpression decreases hypoxic cell viability. Our results demonstrate that hypoxia induces microtubule depolymerization and decreased cell viability via the activation of the p38/MAPK signaling pathway and changes the phosphorylation levels of its downstream effectors, MAP4 and Op18.  相似文献   

11.
Neuronal loss and neuritic/cytoskeletal lesions (synaptic disconnection and proliferation of dystrophic neurites) represent major dementia-associated abnormalities in Alzheimer’s disease (AD). This study examined the role of oxidative stress as a factor contributing to both the cell death and neuritic degeneration cascades in AD. Primary neuron cultures were treated with H2O2 (9–90 μM) or desferrioxamine (2–25 μM) for 24 h and then analyzed for viability, mitochondrial mass, mitochondrial function, and pro-apoptosis and sprouting gene expression. H2O2 treatment causes free-radical injury and desferrioxamine causes hypoxia-type injury without free radical generation. The H2O2-treated cells exhibited sustained viability but neurite retraction, impaired mitochondrial function, increased levels of the pro-apoptosis gene product CD95/Fas, reduced expression of N2J1-immunoreactive neuronal thread protein and synaptophysin, and reduced distribution of mitochondria in neuritic processes. Desferrioxamine treatment resulted in dose-dependent neuronal loss associated with impaired mitochondrial function, proliferation of neurites, and reduced expression of GAP-43, which has a role in path-finding during neurite outgrowth. The results suggest that oxidative stress can cause neurodegeneration associated with enhanced susceptibility to apoptosis due to activation of pro-apoptosis genes, neurite retraction (synaptic disconnection), and impaired transport of mitochondria to cell processes where they are likely required for synaptic function. In contrast, hypoxia-type injury causes neuronal loss with proliferation of neurites (sprouting), impaired mitochondrial function, and reduced expression of molecules required to form and maintain synaptic connections. Since similar abnormalities occur in AD, both oxidative stress and hypoxic injury can contribute to AD neurodegeneration. Received 24 May 2000; received after revision 7 July 2000; accepted 27 July 2000  相似文献   

12.
The cellular prion glycoprotein (PrPC) is ubiquitously expressed but its physiologic functions remain enigmatic, particularly in the immune system. Here, we demonstrate in vitro and in vivo that PrPC is involved in T lymphocytes response to oxidative stress. By monitoring the intracellular level of reduced glutathione, we show that PrP−/− thymocytes display a higher susceptibility to H2O2 exposure than PrP+/+ cells. Furthermore, we find that in mice fed with a restricted diet, a regimen known to increase the intracellular level of ROS, PrP−/− thymocytes are more sensitive to oxidative stress. PrPC function appears to be specific for oxidative stress, since no significant differences are observed between PrP−/− and PrP+/+ mice exposed to other kinds of stress. We also show a marked evolution of the redox status of T cells throughout differentiation in the thymus. Taken together, our results clearly ascribe to PrPC a protective function in thymocytes against oxidative stress.  相似文献   

13.
Tissue hypoxia results in rapid angiogenesis in vivo, triggered by angiogenic proteins, including vascular endothelial growth factor (VEGF). Current views of tissue viability are founded on whether ‘deeper-lying’ cells receive sufficient nutrients and oxygen for normal activity and ultimately survival. For intact tissues, levels of such essential nutrients are governed by micro-vascular perfusion. However, there have been few effective quantitatively defined 3D models, which enable testing of the interplay or interdependence of matrix and cell density, and path diffusion on oxygen consumption in vitro. As a result, concepts on cell vulnerability to low oxygen levels, together with the nature of cellular responses are ill defined. The present study has adapted a novel, optical fibre-based system for in situ, real-time oxygen monitoring within three-dimensionally-spiralled cellular collagen constructs, which were then unfurled to enable quantitative, spatial measurements of VEGF production in different parts of the same construct exposed to different oxygen levels. A VEGF response was elicited by cells exposed to low oxygen levels (20 mmHg), primarily within the construct core. Received 3 August 2007; received after revision 24 October 2007; accepted 29 October 2007 An erratum to this article is available at .  相似文献   

14.
Signalling roles of mammalian phospholipase D1 and D2   总被引:11,自引:0,他引:11  
Phospholipase D (PLD) catalyses the hydrolysis of phosphatidylcholine to generate the lipid second messenger, phosphatidate (PA) and choline. PLD activity in mammalian cells is low and is transiently stimulated upon activation by G-protein-coupled and receptor tyrosine kinase cell surface receptors. Two mammalian PLD enzymes (PLD1 and PLD2) have been cloned and their intracellular regulators identified as ARF and Rho proteins, protein kinase Cα as well as the lipid, phosphatidylinositol [4, 5] bisphosphate (PIP2). I discuss the regulation of these enzymes by cell surface receptors, their cellular localisation and the potential function of PA as a second messenger. Evidence is presented for a role of PA in regulating the lipid kinase activity of PIP 5-kinase, an enzyme that synthesises PIP2. A signalling role of phospholipase D via PA and indirectly via PIP2 in regulating membrane traffic and actin dynamics is indicated by the available data. Received 25 April 2001; received after revision 15 June 2001; accepted 15 June 2001  相似文献   

15.
Flavocytochrome b 558 is the catalytic core of the respiratory-burst oxidase, an enzyme complex that catalyzes the NADPH-dependent reduction of O2 into the superoxide anion O2 - in phagocytic cells. Flavocytochrome b 558 is anchored in the plasma membrane. It is a heterodimer that consists of a large glycoprotein gp91phox (phox for phagocyte oxidase) (β subunit) and a small protein p22phox (α subunit). The other components of the respiratory-burst oxidase are water-soluble proteins of cytosolic origin, namely p67phox, p47phox, p40phox and Rac. Upon cell stimulation, they assemble with the membrane-bound flavocytochrome b 558 which becomes activated and generates O2 -. A defect in any of the genes encoding gp91phox, p22phox, p67phox or p47phox results in chronic granulomatous disease, a genetic disorder characterized by severe and recurrent infections, illustrating the role of O2 - and the derived metabolites H2O2 and HOCl in host defense against invading microorganisms. The electron carriers, FAD and hemes b, and the binding site for NADPH are confined to the gp91phox subunit of flavocytochrome b 558 . The p22phox subunit serves as a docking site for the cytosolic phox proteins. This review provides an overview of current knowledge on the structural organization of the O2 --generating flavocytochrome b 558 , its kinetics, its mechanism of activation and the regulation of its biosynthesis. Homologues of gp91phox, called Nox and Duox, are present in a large variety of non-phagocytic cells. They exhibit modest O2 --generating oxidase activity, and some act as proton channels. Their role in various aspects of signal transduction is currently under investigation and is briefly discussed. Received 28 May 2002; received after revision 20 June 2002; accepted 24 June 2002  相似文献   

16.
Summary Hypophysectomy has no effect on the O2 consumption of minced brain and white muscle tissue, while liver tissue shows a marked reduction. This reduction in liver O2 consumption is attributed to the increased glycogen content that follows hypophysectomy which has the effect of increasing the nonmetabolizing dry weight component of the cells.Supported by the National Research Council of Canada, Grant Number A-3744 to P. H. J.  相似文献   

17.
Enterococci are commensal organisms in the alimentary tract. However, they can cause a variety of life-threatening infections, especially in nosocomial settings. We hypothesized that induction of cell death might enable these facultative pathogenic bacteria to evade the innate immune response and to cause infections of their host. We demonstrate that E. faecium when exposed to lysozyme induces cell death in macrophages in vitro and in vivo. Flow cytometric analyses of J774A.1 macrophages infected with E. faecium revealed loss of cell membrane integrity indicated by uptake of propidium iodide and decrease of the inner mitochondrial transmembrane potential ΔΨm. Inhibition of caspases, treatment of macrophages with cytochalasin D, or rifampicin did not prevent cells from dying, suggesting cell death mechanisms that are independent of caspase activation, bacterial uptake, and intracellular bacterial replication. Characteristics of necrotic cell death were demonstrated by both lack of procaspase 3 activation and cell shrinkage, electron microscopy, and release of lactate dehydrogenase. Pretreatment of E. faecium with lysozyme and subsequently with broad spectrum protease considerably reduced cell death, suggesting that a bacterial surface protein is causative for cell death induction. Moreover, in a mouse peritonitis model we demonstrated that E. faecium induces cell death of peritoneal macrophages in vivo. Altogether, our results show that enterococci, under specific conditions such as exposure to lysozyme, induce necrotic cell death in macrophages, which might contribute to disseminated infections by these facultative pathogenic bacteria.  相似文献   

18.
The neuroepithelial stem cell protein, or Nestin, is a cytoskeletal intermediate filament initially characterized in neural stem cells. However, current extensive evidence obtained in in vivo models and humans shows presence of Nestin+ cells with progenitor and/or regulatory functions in a number of additional tissues, remarkably bone marrow. This review presents the current knowledge on the role of Nestin in essential stem cell functions, including self-renewal/proliferation, differentiation and migration, in the context of the cytoskeleton. We further discuss the available in vivo models for the study of Nestin+ cells and their progeny, their function and elusive nature in nervous system and bone marrow, and their potential mechanistic role and promising therapeutic value in preclinical models of disease. Future improved in vivo models and detection methods will allow to determine the true essence of Nestin+ cells and confirm their potential application as therapeutic target in a range of diseases.  相似文献   

19.
Cancer cell metabolism is characterized by limited oxidative phosphorylation in order to minimize oxidative stress. We have previously shown that the flavonoid flavone in HT-29 colon cancer cells increases the uptake of pyruvate or lactate into mitochondria, which is followed by an increase in O2−.. production that finally leads to apoptosis. Similarly, a supply of palmitoylcarnitine in combination with carnitine induces apoptosis in HT-29 cells by increasing the mitochondrial respiration rate. Here we show that flavone-induced apoptosis is increased more than twofold in the presence of palmitoylcarnitine due to increased mitochondrial fatty acid transport and the subsequent metabolic generation of O2−. in mitochondria is the initiating factor for the execution of apoptosis. Received 12 August 2005; received after revision 12 October 2005; accepted 14 October 2005  相似文献   

20.
Modification of nuclear and cytosolic proteins by O-linked N-acetylglucosamine (O-GlcNAcylation) is ubiquitous in cells. The in vivo function of the protein O-GlcNAcylation, however, is not well understood. Here, we manipulated the cellular O-GlcNAcylation level in Drosophila and found that it promotes developmental growth by enhancing insulin signaling. This increase in growth is due mainly to cell growth and not to cell proliferation. Our data suggest that the increase in the insulin signaling activity is mediated, at least in part, through O-GlcNAcylation of Akt. These results indicate that O-GlcNAcylation is one of the crucial mechanisms involved in control of insulin signaling during Drosophila development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号