首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J Pohlner  R Halter  K Beyreuther  T F Meyer 《Nature》1987,325(6103):458-462
Several human bacterial pathogens, including the Gram-negative diplococcus Neisseria gonorrhoeae, produce extracellular proteases that are specific for human immunoglobulin IgA1. Immunoglobulin A (IgA) proteases have been studied extensively and the genes of some species cloned in Escherichia coli, but their role in pathogenesis remains unclear. Recently we derived a DNA fragment of 5 kilobases (kb) from N. gonorrhoeae MS11 directing extracellular active enzyme in E. coli. Although the mature enzyme of strain MS11 was shown to have a relative molecular mass of 106,000 (Mr 106K) in gels, the DNA sequence of this cloned fragment reveals a single gene coding for a 169K precursor of IgA protease. The precursor contains three functional domains, the amino-terminal leader which is assumed to initiate the inner membrane transport of the precursor, the protease, and a carboxyl-terminal 'helper' domain apparently required for extracellular secretion (excretion). Based on the structural features of the precursor, we propose a model in which the helper serves as a pore for excretion of the protease domain through the outer membrane. IgA protease acquires an active conformation as its extracellular transport proceeds and is released as a proform from the membrane-bound helper by autoproteolysis. The soluble proform further matures into the 106 K IgA protease and a small stable alpha-protein.  相似文献   

2.
During the evolution of proteins the pressure to optimize biological activity is moderated by a need for efficient folding. For most proteins, this is accomplished through spontaneous folding to a thermodynamically stable and active native state. However, in the extracellular bacterial alpha-lytic protease (alphaLP) these two processes have become decoupled. The native state of alphaLP is thermodynamically unstable, and when denatured, requires millennia (t1/2 approximately 1,800 years) to refold. Folding is made possible by an attached folding catalyst, the pro-region, which is degraded on completion of folding, leaving alphaLP trapped in its native state by a large kinetic unfolding barrier (t1/2 approximately 1.2 years). alphaLP faces two very different folding landscapes: one in the presence of the pro-region controlling folding, and one in its absence restricting unfolding. Here we demonstrate that this separation of folding and unfolding pathways has removed constraints placed on the folding of thermodynamically stable proteins, and allowed the evolution of a native state having markedly reduced dynamic fluctuations. This, in turn, has led to a significant extension of the functional lifetime of alphaLP by the optimal suppression of proteolytic sensitivity.  相似文献   

3.
Leonhard K  Stiegler A  Neupert W  Langer T 《Nature》1999,398(6725):348-351
The AAA domain, a conserved Walker-type ATPase module, is a feature of members of the AAA family of proteins, which are involved in many cellular processes, including vesicular transport, organelle biogenesis, microtubule rearrangement and protein degradation. The function of the AAA domain, however, has not been explained. Membrane-anchored AAA proteases of prokaryotic and eukaryotic cells comprise a subfamily of AAA proteins that have metal-dependent peptidase activity and mediate the degradation of non-assembled membrane proteins. Inactivation of an orthologue of this protease family in humans causes neurodegeneration in hereditary spastic paraplegia. Here we investigate the AAA domain of the yeast protein Yme1, a subunit of the iota-AAA protease located in the inner membrane of mitochondria. We show that Yme1 senses the folding state of solvent-exposed domains and specifically degrades unfolded membrane proteins. Substrate recognition and binding are mediated by the amino-terminal region of the AAA domain. The purified AAA domain of Yme1 binds unfolded polypeptides and suppresses their aggregation. Our results indicate that the AAA domain of Ymel has a chaperone-like activity and suggest that the AAA domains of other AAA proteins may have a similar function.  相似文献   

4.
Lorenz IC  Marcotrigiano J  Dentzer TG  Rice CM 《Nature》2006,442(7104):831-835
Hepatitis C virus is a major global health problem affecting an estimated 170 million people worldwide. Chronic infection is common and can lead to cirrhosis and liver cancer. There is no vaccine available and current therapies have met with limited success. The viral RNA genome encodes a polyprotein that includes two proteases essential for virus replication. The NS2-3 protease mediates a single cleavage at the NS2/NS3 junction, whereas the NS3-4A protease cleaves at four downstream sites in the polyprotein. NS3-4A is characterized as a serine protease with a chymotrypsin-like fold, but the enzymatic mechanism of the NS2-3 protease remains unresolved. Here we report the crystal structure of the catalytic domain of the NS2-3 protease at 2.3 A resolution. The structure reveals a dimeric cysteine protease with two composite active sites. For each active site, the catalytic histidine and glutamate residues are contributed by one monomer, and the nucleophilic cysteine by the other. The carboxy-terminal residues remain coordinated in the two active sites, predicting an inactive post-cleavage form. Proteolysis through formation of a composite active site occurs in the context of the viral polyprotein expressed in mammalian cells. These features offer unexpected insights into polyprotein processing by hepatitis C virus and new opportunities for antiviral drug design.  相似文献   

5.
R E Hill  N D Hastie 《Nature》1987,326(6108):96-99
The serine protease inhibitors (serpins) are a family of proteins that function to control the action of serine proteases in many diverse physiological processes. The functional region or reactive centre of these inhibitors is near the C-terminal end and is an exposed site that acts as a bait for the appropriate serine protease to recognize and covalently bind. The specificity of the inhibitor is determined, at least in part, by a single amino acid that resides in this region at the P1 position. We show here that following a gene duplication event the reactive centres of three related rodent protease inhibitors have diverged from each other at unprecedented rates. This has resulted in proteins with different predicted specificities and we postulate that these changes were fixed by positive darwinian selection and that the most likely selective forces are extrinsic proteases, namely those used by parasites to facilitate their spread throughout the host.  相似文献   

6.
The structures of HsIU and the ATP-dependent protease HsIU-HsIV   总被引:10,自引:0,他引:10  
The degradation of cytoplasmic proteins is an ATP-dependent process. Substrates are targeted to a single soluble protease, the 26S proteasome, in eukaryotes and to a number of unrelated proteases in prokaryotes. A surprising link emerged with the discovery of the ATP-dependent protease HslVU (heat shock locus VU) in Escherichia coli. Its protease component HslV shares approximately 20% sequence similarity and a conserved fold with 20S proteasome beta-subunits. HslU is a member of the Hsp100 (Clp) family of ATPases. Here we report the crystal structures of free HslU and an 820,000 relative molecular mass complex of HslU and HslV-the first structure of a complete set of components of an ATP-dependent protease. HslV and HslU display sixfold symmetry, ruling out mechanisms of protease activation that require a symmetry mismatch between the two components. Instead, there is conformational flexibility and domain motion in HslU and a localized order-disorder transition in HslV. Individual subunits of HslU contain two globular domains in relative orientations that correlate with nucleotide bound and unbound states. They are surprisingly similar to their counterparts in N-ethylmaleimide-sensitive fusion protein, the prototype of an AAA-ATPase. A third, mostly alpha-helical domain in HslU mediates the contact with HslV and may be the structural equivalent of the amino-terminal domains in proteasomal AAA-ATPases.  相似文献   

7.
M Miller  M Jaskólski  J K Rao  J Leis  A Wlodawer 《Nature》1989,337(6207):576-579
Retroviral gag, pol and env gene products are translated as precursor polyproteins, which are cleaved by virus-encoded proteases to produce the mature proteins found in virions. On the basis of the conserved Asp-Thr/Ser-Gly sequence at the putative protease active sites, and other biochemical evidence, retroviral proteases have been predicted to be in the family of pepsin-like aspartic proteases. It has been suggested that aspartic proteases evolved from a smaller, dimeric ancestral protein, and a recent model of the human immunodeficiency virus (HIV) protease postulated that a symmetric dimer of this enzyme is equivalent to a pepsin-like aspartic protease. We have now determined the crystal structure of Rous sarcoma virus (RSV) protease at 3-A resolution and find it is dimeric and has a structure similar to aspartic proteases. This structure should provide a useful basis for the modelling of the structures of other retroviral proteases, such as that of HIV, and also for the rational design of protease inhibitors as potential antiviral drugs.  相似文献   

8.
The mouse mutant mnd2 (motor neuron degeneration 2) exhibits muscle wasting, neurodegeneration, involution of the spleen and thymus, and death by 40 days of age. Degeneration of striatal neurons, with astrogliosis and microglia activation, begins at around 3 weeks of age, and other neurons are affected at later stages. Here we have identified the mnd2 mutation as the missense mutation Ser276Cys in the protease domain of the nuclear-encoded mitochondrial serine protease Omi (also known as HtrA2 or Prss25). Protease activity of Omi is greatly reduced in tissues of mnd2 mice but is restored in mice rescued by a bacterial artificial chromosome transgene containing the wild-type Omi gene. Deletion of the PDZ domain partially restores protease activity to the inactive recombinant Omi protein carrying the Ser276Cys mutation, suggesting that the mutation impairs substrate access or binding to the active site pocket. Loss of Omi protease activity increases the susceptibility of mitochondria to induction of the permeability transition, and increases the sensitivity of mouse embryonic fibroblasts to stress-induced cell death. The neurodegeneration and juvenile lethality in mnd2 mice result from this defect in mitochondrial Omi protease.  相似文献   

9.
Wang Y  Zhang Y  Ha Y 《Nature》2006,444(7116):179-180
Escherichia coli GlpG is an integral membrane protein that belongs to the widespread rhomboid protease family. Rhomboid proteases, like site-2 protease (S2P) and gamma-secretase, are unique in that they cleave the transmembrane domain of other membrane proteins. Here we describe the 2.1 A resolution crystal structure of the GlpG core domain. This structure contains six transmembrane segments. Residues previously shown to be involved in catalysis, including a Ser-His dyad, and several water molecules are found at the protein interior at a depth below the membrane surface. This putative active site is accessible by substrate through a large 'V-shaped' opening that faces laterally towards the lipid, but is blocked by a half-submerged loop structure. These observations indicate that, in intramembrane proteolysis, the scission of peptide bonds takes place within the hydrophobic environment of the membrane bilayer. The crystal structure also suggests a gating mechanism for GlpG that controls substrate access to its hydrophilic active site.  相似文献   

10.
Krojer T  Sawa J  Schäfer E  Saibil HR  Ehrmann M  Clausen T 《Nature》2008,453(7197):885-890
All organisms have to monitor the folding state of cellular proteins precisely. The heat-shock protein DegP is a protein quality control factor in the bacterial envelope that is involved in eliminating misfolded proteins and in the biogenesis of outer-membrane proteins. Here we describe the molecular mechanisms underlying the regulated protease and chaperone function of DegP from Escherichia coli. We show that binding of misfolded proteins transforms hexameric DegP into large, catalytically active 12-meric and 24-meric multimers. A structural analysis of these particles revealed that DegP represents a protein packaging device whose central compartment is adaptable to the size and concentration of substrate. Moreover, the inner cavity serves antagonistic functions. Whereas the encapsulation of folded protomers of outer-membrane proteins is protective and might allow safe transit through the periplasm, misfolded proteins are eliminated in the molecular reaction chamber. Oligomer reassembly and concomitant activation on substrate binding may also be critical in regulating other HtrA proteases implicated in protein-folding diseases.  相似文献   

11.
S Ohno  Y Emori  S Imajoh  H Kawasaki  M Kisaragi  K Suzuki 《Nature》1984,312(5994):566-570
Calcium-dependent protease (calcium protease) is apparently involved in a variety of cellular processes. Here we have attempted to clarify the role and regulatory mechanism of calcium protease by analysing its structure. The complete primary structure of calcium protease (relative molecular mass (Mr) 80,000 (80K), 705 amino acids) was deduced from the nucleotide sequence of cloned complementary DNA. The protein contains four distinct domains, and we have observed a marked similarity between the second and fourth domains and the papain-like thiol proteases and calmodulin-like calcium-binding proteins, respectively. This finding suggests that calcium protease arose from the fusion of genes for proteins of completely different function and evolutionary origin. Further, it provides functional insight into cellular regulatory mechanisms mediated by Ca2+ through calcium-binding proteins.  相似文献   

12.
The A4 protein (or beta-protein) is a 42- or 43-amino-acid peptide present in the extracellular neuritic plaques in Alzheimer's disease and is derived from a membrane-bound amyloid protein precursor (APP). Three forms of APP have been described and are referred to as APP695, APP751 and APP770, reflecting the number of amino acids encoded for by their respective complementary DNAs. The two larger APPs contain a 57-amino-acid insert with striking homology to the Kunitz family of protease inhibitors. Here we report that the deduced amino-terminal sequence of APP is identical to the sequence of a cell-secreted protease inhibitor, protease nexin-II (PN-II). To confirm this finding, APP751 and APP695 cDNAs were over-expressed in the human 293 cell line, and the secreted N-terminal extracellular domains of these APPs were purified to near homogeneity from the tissue-culture medium. The relative molecular mass and high-affinity binding to dextran sulphate of secreted APP751 were consistent with that of PN-II. Functionally, secreted APP751 formed stable, non-covalent, inhibitory complexes with trypsin. Secreted APP695 did not form complexes with trypsin. We conclude that the secreted form of APP with the Kunitz protease inhibitor domain is PN-II.  相似文献   

13.
A protein-folding reaction under kinetic control.   总被引:21,自引:0,他引:21  
D Baker  J L Sohl  D A Agard 《Nature》1992,356(6366):263-265
Synthesis of alpha-lytic protease is as a precursor containing a 166 amino-acid pro region transiently required for the correct folding of the protease domain. By omitting the pro region in an in vitro refolding reaction we trapped an inactive, but folding competent state (I) having an expanded radius yet native-like secondary structure. The I state is stable for weeks at physiological pH in the absence of denaturant, but rapidly folds to the active, native state on addition of the pro region as a separate polypeptide chain. The mechanism of action of the pro region is distinct from that of the chaperonins: rather than reducing the rate of off-pathway reactions, the pro region accelerates the rate-limiting step on the folding pathway by more than 10(7). Because both the I and native states are stable under identical conditions with no detectable interconversion, the folding of alpha-lytic protease must be under kinetic and not thermodynamic control.  相似文献   

14.
DeLotto R  Spierer P 《Nature》1986,323(6090):688-692
The maternal effect gene snake is required for the establishment of the dorsal-ventral axis during the embryonic development of Drosophila. The molecular cloning of the gene and analysis of a complementary DNA sequence suggest that the gene encodes a serine protease which is structurally similar to proteases involved in blood clotting, peptide processing, and complement fixation pathways.  相似文献   

15.
Peptide exosite inhibitors of factor VIIa as anticoagulants   总被引:6,自引:0,他引:6  
Potent anticoagulants have been derived by targeting the tissue factor-factor VIIa complex with naive peptide libraries displayed on M13 phage. The peptides specifically block the activation of factor X with a median inhibitory concentration of 1 nM and selectively inhibit tissue-factor-dependent clotting. The peptides do not bind to the active site of factor VIIa; rather, they work by binding to an exosite on the factor VIIa protease domain, and non-competitively inhibit activation of factor X and amidolytic activity. One such peptide (E-76) has a well defined structure in solution determined by NMR spectroscopy that is similar to the X-ray crystal structure when complexed with factor VIIa. These structural and functional studies indicate an allosteric 'switch' mechanism of inhibition involving an activation loop of factor VIIa and represent a new framework for developing inhibitors of serine proteases.  相似文献   

16.
C Lazure  R Leduc  N G Seidah  G Thibault  J Genest  M Chrétien 《Nature》1984,307(5951):555-558
Tonin, an esteroprotease isolated from rat submaxillary gland, is a serine protease with trypsin- and chymotrypsin-like activity. The substrate specificity of tonin shows that it differs from kallikreins and is definitely not a renin-like enzyme or an angiotensin-converting enzyme. Tonin can produce directly the vasoactive peptide angiotensin II, from angiotensin I, angiotensinogen and the synthetic tetradecapeptide substrate of renin by cleavage of a Phe-His bond. It has also been found to cleave some Phe and Arg bonds in various substrates such as beta-lipotropin (beta-LPH), adrenocorticotropin (ACTH), pro-opiomelanocortin (POMC) and substance P. Here we describe the complete amino acid sequence of rat submaxillary gland, tonin. Comparison of the sequence of 219 amino acids with other serine proteases, particularly kallikreins, gamma-subunit of nerve growth factor (NGF) and the recently described gamma-renin, reveals extensive similarities. More interestingly, it also reveals the substitution of an Asp residue always found in the serine protease active site triad (Asp, His, Ser) by a Leu residue. This unusual substitution does not seem to affect the proteolytic activity of the enzyme.  相似文献   

17.
Structure of a serpin-protease complex shows inhibition by deformation   总被引:34,自引:0,他引:34  
Huntington JA  Read RJ  Carrell RW 《Nature》2000,407(6806):923-926
The serpins have evolved to be the predominant family of serine-protease inhibitors in man. Their unique mechanism of inhibition involves a profound change in conformation, although the nature and significance of this change has been controversial. Here we report the crystallographic structure of a typical serpin-protease complex and show the mechanism of inhibition. The conformational change is initiated by reaction of the active serine of the protease with the reactive centre of the serpin. This cleaves the reactive centre, which then moves 71 A to the opposite pole of the serpin, taking the tethered protease with it. The tight linkage of the two molecules and resulting overlap of their structures does not affect the hyperstable serpin, but causes a surprising 37% loss of structure in the protease. This is induced by the plucking of the serine from its active site, together with breakage of interactions formed during zymogen activation. The disruption of the catalytic site prevents the release of the protease from the complex, and the structural disorder allows its proteolytic destruction. It is this ability of the conformational mechanism to crush as well as inhibit proteases that provides the serpins with their selective advantage.  相似文献   

18.
A structural model for the retroviral proteases   总被引:7,自引:0,他引:7  
L H Pearl  W R Taylor 《Nature》1987,329(6137):351-354
In many retroviruses the 5' end of the pol gene codes for a protease vital for the processing of the gag polyprotein into the separate core proteins. In some viruses this protease is encoded at the 3' end of the gag gene, or between the gag and pol genes in a different reading frame to either. A sequence, Asp-Thr-Gly, which is conserved in retroviral proteases is also conserved in the active sites of aspartic proteases, an observation which has led to the suggestion that the retroviral proteases could belong to this family. We have examined the sequences of the aspartic and retroviral protease families, using pattern-recognition, structure prediction and molecular modelling techniques, and conclude that the viral protease sequences probably correspond to a single domain of an aspartic protease and may function in a dimeric form. We have constructed a model of the pol-protease of human immunodeficiency virus 1 (HIV-1) to test this hypothesis.  相似文献   

19.
Blood coagulation can be initiated when factor VII or VIIa, a plasma protease, binds to its essential cofactor, tissue factor (TF), and proteolytically activates factors IX and X, triggering a cascade of events which eventually leads to the formation of thrombin and a fibrin clot. Plasma contains a lipoprotein-associated coagulation inhibitor (LACI) which inhibits activated factor X (Xa) directly and, in a Xa-dependent way, inhibits VII(a)/TF activity, presumably by forming a quaternary Xa/LACI/VII(a)/TF complex. Sequence analysis of complementary DNA clones has shown that LACI contains three tandemly repeated Kunitz-type serine protease inhibitory domains. To investigate the relationship between these Kunitz structures and LACI function, we have used site-directed mutagenesis to produce altered forms of LACI in which the residue at the active-site cleft of each Kunitz domain has been individually changed. The second Kunitz domain is required for efficient binding and inhibition of Xa, and both Kunitz domains 1 and 2 are required for the inhibition of VIIa/TF activity; but alteration of the active-site residue of the third Kunitz domain has no significant effect on either function. We propose that in the putative inhibitory complex, Kunitz domain 1 is bound to the active site of VII(a)/TF and that Kunitz domain 2 is bound to Xa's active site.  相似文献   

20.
The crystal structure of the protease of the human immunodeficiency virus type (HIV-1), which releases structural proteins and enzymes from viral polyprotein products, has been determined to 3 A resolution. Large regions of the protease dimer, including the active site, have structural homology to the family of microbial aspartyl proteases. The structure suggests a mechanism for the autoproteolytic release of protease and a role in the control of virus maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号