首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
Dendritic spikes as a mechanism for cooperative long-term potentiation   总被引:22,自引:0,他引:22  
Golding NL  Staff NP  Spruston N 《Nature》2002,418(6895):326-331
Strengthening of synaptic connections following coincident pre- and postsynaptic activity was proposed by Hebb as a cellular mechanism for learning. Contemporary models assume that multiple synapses must act cooperatively to induce the postsynaptic activity required for hebbian synaptic plasticity. One mechanism for the implementation of this cooperation is action potential firing, which begins in the axon, but which can influence synaptic potentiation following active backpropagation into dendrites. Backpropagation is limited, however, and action potentials often fail to invade the most distal dendrites. Here we show that long-term potentiation of synapses on the distal dendrites of hippocampal CA1 pyramidal neurons does require cooperative synaptic inputs, but does not require axonal action potential firing and backpropagation. Rather, locally generated and spatially restricted regenerative potentials (dendritic spikes) contribute to the postsynaptic depolarization and calcium entry necessary to trigger potentiation of distal synapses. We find that this mechanism can also function at proximal synapses, suggesting that dendritic spikes participate generally in a form of synaptic potentiation that does not require postsynaptic action potential firing in the axon.  相似文献   

2.
The glycemia-sensitive neuron in lateral hypothalamic area (LHA) is one of the important central neural events involved in the feeding control.Electrophysio-logical studies have demonstrated that gastrointestinal vagal afferent inputs could convey the meal-related infomation of gastrointestinal tract to the hypothalamus,In this study ,we examined whether the gastric vagal afferent inputs could reach the glycemia-sensitive neurons of the LHA by using in vivo extracelluar recording technique in the rat.The results showed that stimulation of gastric vagal nerves elictied two types of the LHA neurons responses:the phasic response (93/116,80.2%),and the change in cell‘s firing pattern (23/116,19.3%) ,Within the 93 cells that responded to the gastric vagal stimulation with a phasic response ,67(72.0%) showed an inhibition in the cell‘s firing rate 26(27.4%) were excited,Of the 23 cells that showed a change in the firing pattern 13 responded to the gastric vagal stimulation with a long-lasting increase or decrease in firing rate,the remaining 10 cells turned thier discrete spiking to the bust discharging .In addition ,of 101 LHA neurons including the ypes of responsive neurons,73(72.3%)were identified to be glycemia-sensitive neurons,These results demonstrated that the gastric vagal afferent inputs could reach the LHA and predominaltly reach those glycemia-seach neurons in the LHA ,Presumably,the modulation of glycemia-sensitive neurons of LHA by the gastric vagal afferent inputs may play an important role in the short-term regulation of feeding behavior.  相似文献   

3.
The lateral hypothalamic area (LHA) is one of the most important central areas in the regulation of feeding behavior[1]. The glycemia-sensitive neurons within the LHA sense the blood glucose level and subsequently trig-ger various visceral and somatic responses for maintaining the homeostasis of blood glucose concentration. Some electrophysiological studies have demonstrated that the gastric vagal afferent inputs could reach the LHA in the cat[2,3], but the studies did not reveal whether th…  相似文献   

4.
主要证明了脉冲幅度与神经元状态有关的Stein模型都能够使两个初始膜电位不同的神经元以概率1达到同步发放.这一结论可以推广到多个初始膜电位不同的神经元.但同步发放的时间没有上限,目前只能给出一个粗略的方法,估计出同步概率在α%(0 <α<100)以上的同步时间.最后,脉冲幅度与神经元状态有关的Stein模型的数值模拟结果符合前述结论的预期.  相似文献   

5.
Froemke RC  Poo MM  Dan Y 《Nature》2005,434(7030):221-225
In the neocortex, each neuron receives thousands of synaptic inputs distributed across an extensive dendritic tree. Although postsynaptic processing of each input is known to depend on its dendritic location, it is unclear whether activity-dependent synaptic modification is also location-dependent. Here we report that both the magnitude and the temporal specificity of spike-timing-dependent synaptic modification vary along the apical dendrite of rat cortical layer 2/3 pyramidal neurons. At the distal dendrite, the magnitude of long-term potentiation is smaller, and the window of pre-/postsynaptic spike interval for long-term depression (LTD) is broader. The spike-timing window for LTD correlates with the window of action potential-induced suppression of NMDA (N-methyl-D-aspartate) receptors; this correlation applies to both their dendritic location-dependence and pharmacological properties. Presynaptic stimulation with partial blockade of NMDA receptors induced LTD and occluded further induction of spike-timing-dependent LTD, suggesting that NMDA receptor suppression underlies LTD induction. Computer simulation studies showed that the dendritic inhomogeneity of spike-timing-dependent synaptic modification leads to differential input selection at distal and proximal dendrites according to the temporal characteristics of presynaptic spike trains. Such location-dependent tuning of inputs, together with the dendritic heterogeneity of postsynaptic processing, could enhance the computational capacity of cortical pyramidal neurons.  相似文献   

6.
给出了一类包含抑制和易化的短时程突触可塑性的简化模型.分别讨论了突触前发放为周期和Poisson电位脉冲串时,突触后的神经元的抑制和易化机制,并给出了定性分析和数值结果的比较.进一步发现在相同的突触前发放频率下,随机模型使得突触后神经元发放的易化和抑制的参数范围比周期模型的参数范围大.  相似文献   

7.
经颅磁声电刺激(TMAES)是一种新型无创的脑神经调控技术,具有良好的应用前景.该技术利用静磁场和超声波共同作用所产生的磁声电效应,在神经组织中产生感应电流,进而对神经组织实施刺激.作者基于小脑颗粒细胞模型(GrC模型),建立了突触连接GrC模型,对TMAES刺激下突触连接GrC模型的动作电位进行仿真,分析了动作电位的传播方向.在TMAES神经元的不同突触连接方式下,对比了兴奋性与抑制性对神经元放电的影响.通过改变抑制点的位置分析了抑制作用在TMAES下对神经元放电模式的影响.仿真结果显示,经颅磁声电刺激对GrC模型神经元放电节律具有重要影响.实现了两个神经元突触连接模型在TMAES下的仿真,对进一步发掘和研究神经元的传导及连接模式具有重要意义.  相似文献   

8.
Person AL  Raman IM 《Nature》2012,481(7382):502-505
An unusual feature of the cerebellar cortex is that its output neurons, Purkinje cells, release GABA (γ-aminobutyric acid). Their high intrinsic firing rates (50?Hz) and extensive convergence predict that their target neurons in the cerebellar nuclei would be largely inhibited unless Purkinje cells pause their spiking, yet Purkinje and nuclear neuron firing rates do not always vary inversely. One indication of how these synapses transmit information is that populations of Purkinje neurons synchronize their spikes during cerebellar behaviours. If nuclear neurons respond to Purkinje synchrony, they may encode signals from subsets of inhibitory inputs. Here we show in weanling and adult mice that nuclear neurons transmit the timing of synchronous Purkinje afferent spikes, owing to modest Purkinje-to-nuclear convergence ratios (~40:1), fast inhibitory postsynaptic current kinetics (τ(decay) = 2.5?ms) and high intrinsic firing rates (~90?Hz). In vitro, dynamically clamped asynchronous inhibitory postsynaptic potentials mimicking Purkinje afferents suppress nuclear cell spiking, whereas synchronous inhibitory postsynaptic potentials entrain nuclear cell spiking. With partial synchrony, nuclear neurons time-lock their spikes to the synchronous subpopulation of inputs, even when only 2 out of 40 afferents synchronize. In vivo, nuclear neurons reliably phase-lock to regular trains of molecular layer stimulation. Thus, cerebellar nuclear neurons can preferentially relay the spike timing of synchronized Purkinje cells to downstream premotor areas.  相似文献   

9.
Larkum ME  Zhu JJ  Sakmann B 《Nature》1999,398(6725):338-341
Pyramidal neurons in layer 5 of the neocortex of the brain extend their axons and dendrites into all layers. They are also unusual in having both an axonal and a dendritic zone for the initiation of action potentials. Distal dendritic inputs, which normally appear greatly attenuated at the axon, must cross a high threshold at the dendritic initiation zone to evoke calcium action potentials but can then generate bursts of axonal action potentials. Here we show that a single back-propagating sodium action potential generated in the axon facilitates the initiation of these calcium action potentials when it coincides with distal dendritic input within a time window of several milliseconds. Inhibitory dendritic input can selectively block the initiation of dendritic calcium action potentials, preventing bursts of axonal action potentials. Thus, excitatory and inhibitory postsynaptic potentials arising in the distal dendrites can exert significantly greater control over action potential initiation in the axon than would be expected from their electrotonically isolated locations. The coincidence of a single back-propagating action potential with a subthreshold distal excitatory postsynaptic potential to evoke a burst of axonal action potentials represents a new mechanism by which the main cortical output neurons can associate inputs arriving at different cortical layers.  相似文献   

10.
H C Pape  D A McCormick 《Nature》1989,340(6236):715-718
Neurons in many regions of the mammalian nervous system generate action potentials in two distinct modes: rhythmic oscillations in which spikes cluster together in a cyclical manner, and single spike firing in which action potentials occur relatively independently of one another. Which mode of action potential generation a neuron displays often varies with the behavioural state of the animal. For example, the shift from slow-wave sleep to waking and attentiveness is associated with a change in thalamic neurons from rhythmic burst firing to repetitive single spike activity, and a greatly increased responsiveness to excitatory synaptic inputs. This marked change in firing pattern and excitability is controlled in part by ascending noradrenergic and serotonergic inputs from the brainstem, although the cellular mechanisms of this effect have remained largely unknown. Here we report that noradrenaline and serotonin enhance a mixed Na+/K+ current which is activated by hyperpolarization (Ih) and that this enhancement may be mediated by increases in intracellular concentration of cyclic AMP. This novel action of noradrenaline and serotonin reduces the ability of thalamic neurons to generate rhythmic burst firing and promotes a state of excitability that is conducive to the thalamocortical synaptic processing associated with cognition.  相似文献   

11.
Spike-timing-dependent synaptic modification induced by natural spike trains   总被引:22,自引:0,他引:22  
Froemke RC  Dan Y 《Nature》2002,416(6879):433-438
The strength of the connection between two neurons can be modified by activity, in a way that depends on the timing of neuronal firing on either side of the synapse. This spike-timing-dependent plasticity (STDP) has been studied by systematically varying the intervals between pre- and postsynaptic spikes. Here we studied how STDP operates in the context of more natural spike trains. We found that in visual cortical slices the contribution of each pre-/postsynaptic spike pair to synaptic modification depends not only on the interval between the pair, but also on the timing of preceding spikes. The efficacy of each spike in synaptic modification was suppressed by the preceding spike in the same neuron, occurring within several tens of milliseconds. The direction and magnitude of synaptic modifications induced by spike patterns recorded in vivo in response to natural visual stimuli were well predicted by incorporating the suppressive inter-spike interaction within each neuron. Thus, activity-induced synaptic modification depends not only on the relative spike timing between the neurons, but also on the spiking pattern within each neuron. For natural spike trains, the timing of the first spike in each burst is dominant in synaptic modification.  相似文献   

12.
神经元的功能主要由突触后膜、胞体膜和始段膜三种膜结构的不同活动特性决定的.根据这三种膜结构的电生理性质及其形态结构提出了一个比较精确的现实性动态神经网络模型.计算机仿真结果表明这个模型在具有比较简明的形式及较小的计算量的同时,能较全面地反映神经元的活动特性.通过与其他模型的比较,对神经元各部分的结构与其功能的关系有进一步的认识.  相似文献   

13.
de la Rocha J  Doiron B  Shea-Brown E  Josić K  Reyes A 《Nature》2007,448(7155):802-806
Populations of neurons in the retina, olfactory system, visual and somatosensory thalamus, and several cortical regions show temporal correlation between the discharge times of their action potentials (spike trains). Correlated firing has been linked to stimulus encoding, attention, stimulus discrimination, and motor behaviour. Nevertheless, the mechanisms underlying correlated spiking are poorly understood, and its coding implications are still debated. It is not clear, for instance, whether correlations between the discharges of two neurons are determined solely by the correlation between their afferent currents, or whether they also depend on the mean and variance of the input. We addressed this question by computing the spike train correlation coefficient of unconnected pairs of in vitro cortical neurons receiving correlated inputs. Notably, even when the input correlation remained fixed, the spike train output correlation increased with the firing rate, but was largely independent of spike train variability. With a combination of analytical techniques and numerical simulations using 'integrate-and-fire' neuron models we show that this relationship between output correlation and firing rate is robust to input heterogeneities. Finally, this overlooked relationship is replicated by a standard threshold-linear model, demonstrating the universality of the result. This connection between the rate and correlation of spiking activity links two fundamental features of the neural code.  相似文献   

14.
水蛭前宝塔神经元(AP)是神经节前侧囊中胞体最大的神经元,它接受多种感觉传入,但传出功能未知。通过应用细胞内、外电生理学记录结合方法,揭示了AP神经元的输出效应可能是调制水蛭体壁肌肉细胞膜的兴奋水平。  相似文献   

15.
Pouille F  Scanziani M 《Nature》2004,429(6993):717-723
Recurrent inhibitory loops are simple neuronal circuits found in the central nervous system, yet little is known about the physiological rules governing their activity. Here we use simultaneous somatic and dendritic recordings in rat hippocampal slices to show that during a series of action potentials in pyramidal cells recurrent inhibition rapidly shifts from their soma to the apical dendrites. Two distinct inhibitory circuits are sequentially recruited to produce this shift: one, time-locked with submillisecond precision to the onset of the action potential series, transiently inhibits the somatic and perisomatic regions of pyramidal cells; the other, activated in proportion to the rate of action potentials in the series, durably inhibits the distal apical dendrites. These two operating modes result from the synergy between pre- and postsynaptic properties of excitatory synapses onto recurrent inhibitory neurons with distinct projection patterns. Thus, the onset of a series of action potentials and the rate of action potentials in the series are selectively captured and transformed into different spatial patterns of recurrent inhibition.  相似文献   

16.
根据神经元动作电位的发放特性,将其描述为神经振子,引入相位方法建立关于神经元集群编码活动的模型.通过对模型的分析与数值模拟结果表明Fisher信息量随着有效相宽呈缓慢减小后迅速增加的趋势,并随着神经元密度的增大而增大.集群编码活动所能达到的最小误差与神经元密度呈单调递减关系,它的精度实现依赖于集群的规模大小.  相似文献   

17.
研究了大鼠在条件性恐惧视觉建立过程中杏仁核对恐惧视觉信息的编码。首先,设计两种不同拓扑结构("十"和"O")图形,利用巴普洛夫条件反射原理建立大鼠条件性恐惧视觉联结,采用多通道神经信号采集系统采集恐惧视觉建立过程中的杏仁核神经元集群响应信号。然后,对神经元响应信号进行有效响应区间的自适应选取,分别采用神经元集群发放频率和集群熵研究条件性恐惧视觉建立的不同阶段杏仁核的集群编码,发现神经元集群在条件性恐惧建立后发放率、熵均有显著增加。最后,采用支持向量机构建条件性恐惧建立过程中不同恐惧水平的分类模型,验证两种编码的效果。结果表明集群熵编码包含更多的非线性信息和时空整合信息,能更有效地实现恐惧视觉建立过程中视觉信息的"恐惧"水平的表征,由此推测大鼠杏仁核神经核团是以集群的方式对恐惧信息进行编码的。  相似文献   

18.
给出了更新过程的两种扩散逼近.讨论了逆高斯输入下IF模型的输出,包括发放率、变差系数.通过模拟知道两种扩散逼近能够很好地近似逆高斯输入,随着发放率的增大,发放波动较小,模型趋于稳定发放.  相似文献   

19.
A physiological role for GABAB receptors in the central nervous system   总被引:21,自引:0,他引:21  
P Dutar  R A Nicoll 《Nature》1988,332(6160):156-158
The role of GABA in synaptic transmission in the mammalian central nervous system is more firmly established than for any other neurotransmitter. With virtually every neuron studied, the synaptic action of GABA is mediated by bicuculline-sensitive GABAA receptors which selectively increase chloride conductance. However, it has been shown that GABA has a presynaptic inhibitory action on transmitter release that is insensiive to bicuculline and is selectively mimicked by baclofen. The receptors involved in this action are referred to as GABAB receptors, to distinguish them from the classic bicuculline-sensitive GABAA receptors. In hippocampal pyramidal cells an additional postsynaptic action of GABA and baclofen has been reported that is also insensitive to GABAA antagonists, and may be mediated by GABAB receptors on the postsynaptic neuron. This action of GABA and baclofen involves an increase in potassium conductance. Synaptic activation of pathways converging on hippocampal pyramidal cells results in a slow inhibitory postsynaptic potential which involves an increase in potassium conductance, and it has been suggested that GABAB receptors might be responsible for this synaptic potential. However, to establish convincingly that GABAB receptors are physiologically important in the central nervous system, a selective GABAB antagonist is required. Here we provide this missing evidence. Using the hippocampal slice preparation, we now report that the phosphonic acid derivative of baclofen, phaclofen, is a remarkably selective antagonist of both the postsynaptic action of baclofen and the bicuculline-resistant action of GABA, and that it selectively abolishes the slow inhibitory postsynaptic potential in pyramidal cells.  相似文献   

20.
R J Douglas  K A Martin  D Whitteridge 《Nature》1988,332(6165):642-644
Theoretical analyses of the electrical behaviour of the highly branched processes of nerve cells has focused attention on the possibility that single cells perform complex logical operations rather than simply summing their synaptic inputs. In particular, it has been suggested that the orientation and direction selectivity of cells in the visual cortex results from the action of a nonlinear 'shunting' inhibition that emulates an AND-NOT logical operation. The characteristic biophysical feature of this proposed inhibitory mechanism is that it evokes a large and relatively sustained increase in the conductance of the neuronal membrane while leaving the membrane potential unaffected. This shunting mechanism contrasts with linear 'summative' inhibition in which conductance changes are less prominent, and inhibition is achieved by hyperpolarization of the membrane potential. In a direct experimental test of the hypothesis that the selectivity of visual cortical neurons depends on shunting inhibition we found no evidence for the large conductance changes predicted by the theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号