首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mammalian target of rapamycin (mTOR) complex exerts a pivotal role in protein anabolism and cell growth. Despite its importance, few studies adequately address the complexity of phosphorylation of the mTOR protein itself to enable conclusions to be drawn on the extent of kinase activation following this event. In particular, a large number of studies in the skeletal muscle biology field have measured Serine 2448 (Ser2448) phosphorylation as a proxy of mTOR kinase activity. However, the evidence to be described is that Ser2448 is not a measure of mTOR kinase activity nor is a target of AKT activity and instead has inhibitory effects on the kinase that is targeted by the downstream effector p70S6K in a negative feedback loop mechanism, which is evident when revisiting muscle research studies. It is proposed that this residue modification acts as a fine-tuning mechanism that has been gained during vertebrate evolution. In conclusion, it is recommended that Ser2448 is an inadequate measure and that preferential analysis of mTORC1 activation should focus on the downstream and effector proteins, including p70S6K and 4E-BP1, along mTOR protein partners that bind to mTOR protein to form the active complexes 1 and 2.  相似文献   

2.
3.
Since the identification of RNA-mediated interference (RNAi) in 1998, RNAi has become an effective tool to inhibit gene expression. The inhibition mechanism is triggered by introducing a short interference double-stranded RNA (siRNA,19 approximately 27 bp) into the cytoplasm, where the guide strand of siRNA (usually antisense strand) binds to its target messenger RNA and the expression of the target gene is blocked. RNAi has been widely applied in gene functional analysis, and as a potential therapeutic strategy in viral diseases, drug target discovery, and cancer therapy. Among the factors which may compromise inhibition efficiency, how to design siRNAs with high efficiency and high specificity to its target gene is critical. Although many algorithms have been developed for this purpose, it is still difficult to design such siRNAs. In this review, we will briefly discuss prediction methods for siRNA efficiency and the problems of present approaches.  相似文献   

4.
Galectins have the potential to provide a promising alternative for unveiling the complexity of embryonic stem (ES) cell self-renewal, although the mechanism by which galectins maintain ES cell self-renewal has yet to be identified. Galectin-1 increased [3H]-thymidine incorporation as well as cyclin expression and decreased p27kip1 expression. Src and caveolin-1 phosphorylation was increased by galectin-1, and phospho-caveolin-1 was inhibited by PP2. In addition, inhibition of caveolin-1 by small interfering RNA and methyl-β-cyclodextrin (Mβ-CD) decreased galectin-1-induced cyclin expression and [3H]-thymidine incorporation. Galectin-1 caused Akt and mTOR phosphorylation, which is involved in cyclin expression. Galectin-1-induced phospho-Akt and -mTOR was inhibited by PP2, ERas siRNA, caveolin-1 siRNA and Mβ-CD. Furthermore, mTOR phosphorylation was decreased by LY294002 and Akt inhibitor. Galectin-1-induced increase in cyclin expression and decrease in p27kip1 was blocked by Akt inhibitor and rapamycin. In conclusion, galectin-1 increased DNA synthesis in mouse ES cells via Src, caveolin-1 Akt, and mTOR signaling pathways. Received 30 October 2008; received after revision 18 February 2009; accepted 24 February 2009  相似文献   

5.
RNA interference (RNAi) has been widely adopted to repress specific gene expression and is easily achieved by designing small interfering RNAs (siRNAs) with perfect sequence complementarity to the intended target mRNAs. Although siRNAs direct Argonaute (Ago), a core component of the RNA-induced silencing complex (RISC), to recognize and silence target mRNAs, they also inevitably function as microRNAs (miRNAs) and suppress hundreds of off-targets. Such miRNA-like off-target repression is potentially detrimental, resulting in unwanted toxicity and phenotypes. Despite early recognition of the severity of miRNA-like off-target repression, this effect has often been overlooked because of difficulties in recognizing and avoiding off-targets. However, recent advances in genome-wide methods and knowledge of Ago–miRNA target interactions have set the stage for properly evaluating and controlling miRNA-like off-target repression. Here, we describe the intrinsic problems of miRNA-like off-target effects caused by canonical and noncanonical interactions. We particularly focus on various genome-wide approaches and chemical modifications for the evaluation and prevention of off-target repression to facilitate the use of RNAi with secured specificity.  相似文献   

6.
Excessive nutrients, especially amino acids, impair insulin action on glucose metabolism in skeletal muscle. We tested the hypothesis that the branched-chain amino acid leucine reduces acute insulin action in primary myotubes via a negative feedback mechanism involving ribosomal protein S6 kinase 1 (S6K1). The effect of S6K1 on glucose metabolism was determined by applying RNA interference (siRNA). Leucine (5 mM) reduced glucose uptake and incorporation to glycogen by 13% and 22%, respectively, compared to the scramble siRNA-transfected control at the basal level. Leucine also reduced insulin-stimulated Akt phosphorylation, glucose uptake and glucose incorporation to glycogen (39%, 39% and 37%, respectively), and this reduction was restored after S6K1 silencing. Depletion of S6K1 enhanced basal glucose utilization and protected against the development of impaired insulin action, in response to excessive leucine. In conclusion, S6K1 plays an important role in the regulation of insulin action on glucose metabolism in skeletal muscle. Received 22 December 2008; received after revision 19 February 2009; accepted 23 February 2009  相似文献   

7.
8.
Recent research has demonstrated that cell cycle-associated molecules are activated in multiple forms of cell death in mature neurons, and raised a hypothesis that unscheduled cell cycle activity leads to neuronal cell death. But there is little evidence that changes in endogenous level of these molecules are causally associated with neuronal cell death. Here we transfected small interfering RNA (siRNA) targeting cyclin-dependent kinase (CDK) inhibitor p27, which plays an important role in cell cycle arrest at G1-S phase, into cultured cortical neurons. Transfection of p27 siRNA reduced neuronal viability in a time-dependent manner. p27 siRNA induced phosphorylation of retinoblastoma protein (Rb), a marker of cell cycle progression at late G1 phase. Moreover, phosphorylation of Rb and neuronal cell death provoked by p27 siRNA were abrogated by pharmacological CDK inhibitors, olomoucine and purvalanol A. Our data demonstrate that a decrease in endogenous p27 induces neuronal cell death through elevating cell cycle activity.  相似文献   

9.
Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase that plays a critical role in the control of cellular growth and metabolism. Hyperactivation of mTOR pathway is common in human cancers, driving uncontrolled proliferation. MicroRNA (miRNA) is a class of short noncoding RNAs that regulate the expression of a wide variety of genes. Deregulation of miRNAs is a hallmark of cancer. Recent studies have revealed interplays between miRNAs and the mTOR pathway during cancer development. Such interactions appear to provide a fine-tuning of various cellular functions and contribute qualitatively to the behavior of cancer. Here we provide an overview of current knowledge regarding the reciprocal relationship between miRNAs and mTOR pathway: regulation of mTOR signaling by miRNAs and control of miRNA biogenesis by mTOR. Further research in this area may prove important for the diagnosis and therapy of human cancer.  相似文献   

10.
Cisplatin is a widely used chemotherapeutic agent that causes significant hearing loss. Previous studies have shown that cisplatin exposure is associated with increase in reactive oxygen species (ROS) in the cochlea. The inner ear expresses a unique isoform of NADPH oxidase, NOX3. This enzyme may be the primary source of ROS generation in the cochlea. The knockdown of NOX3 by pretreatment with siRNA prevented cisplatin ototoxicity, as demonstrated by preservation of hearing thresholds and inner ear sensory cells. Trans-tympanic NOX3 siRNA reduced the expression of NOX3 and biomarkers of cochlear damage, including transient receptor vanilloid 1 (TRPV1) channel and kidney injury molecule-1 (KIM-1) in cochlear tissues. In addition, siRNA against NOX3 reduced apoptosis as demonstrated by TUNEL staining, and prevented the increased expression of Bax and abrogated the decrease in Bcl2 expression following cisplatin administration. Trans-tympanic administration of siRNA directed against NOX3 may provide a useful method of attenuating cisplatin ototoxicity. In this paper, we review recent publications dealing with the role of NOX3 in ototoxicity and the effects of siRNA against cisplatin-induced hearing loss.  相似文献   

11.
12.
Circulating protein C (PC) plays a vital role as an anti-coagulant and anti-inflammatory mediator. We show here that human endothelial cells produce PC that acts through novel mediators to enhance their own functional integrity. When endogenous PC or its receptor, endothelial protein C receptor (EPCR), was suppressed by small interfering (si) RNA, human umbilical cord endothelial cell (HUVEC) proliferation was decreased and apoptosis elevated. Interestingly, PC or EPCR siRNA significantly increased HUVEC permeability, which is likely via reduction of the angiopoietin (Ang)1/Ang2 ratio and inhibition of the peripheral localization of the tight junction protein, zona occludins-1. In addition, PC or EPCR siRNA inhibited type IV collagen and matrix metalloproteinase-2, providing the first evidence that PC contributes to vascular basement membrane formation. These newly described actions of endogenous PC act to stabilize endothelial cells and enhance barrier function, to potentially promote the functional integrity of blood vessels.  相似文献   

13.
The laminin-binding integrin α6β4 plays key roles in both normal epithelial and endothelial cells and during tumor cell progression, metastasis, and angiogenesis. Previous cysteine mutagenesis studies have suggested that palmitoylation of α6β4 protein supports a few integrin-dependent functions and molecular associations. Here we took another approach and obtained strikingly different results. We used overexpression and RNAi knockdown in multiple cell types to identify protein acyl transferase DHHC3 as the enzyme responsible for integrin β4 and α6 palmitoylation. Ablation of DHHC3 markedly diminished integrin-dependent cellular cable formation on Matrigel, integrin signaling through Src, and β4 phosphorylation on key diagnostic amino acids (S1356 and 1424). However, unexpectedly, and in sharp contrast to prior α6β4 mutagenesis results, knockdown of DHHC3 accelerated the degradation of α6β4, likely due to an increase in endosomal exposure to cathepsin D. When proteolytic degradation was inhibited (by Pepstatin A), rescued α6β4 accumulated intracellularly, but was unable to reach the cell surface. DHHC3 ablation effects were strongly selective for α6β4. Cell-surface levels of ~10 other proteins (including α3β1) were not diminished, and the appearance of hundreds of other palmitoylated proteins was not altered. Results obtained here demonstrate a new substrate for the DHHC3 enzyme and provide novel opportunities for modulating α6β4 expression, distribution, and function.  相似文献   

14.
目的 通过构建小干扰RNA(small interfering RNA,siRNA)降低MG 63骨肉瘤细胞环氧合酶 2(COX 2)基因的表达,并进一步研究其对MG 63骨肉瘤细胞增值、侵袭、迁移能力的影响及分子机制。方法 设计靶向干扰COX 2基因的siRNA,通过脂质体转染MG 63骨肉瘤细胞,使其抑制MG 63骨肉瘤细胞COX 2基因的表达,后采用噻唑蓝(MTT)比色法、Transwell小室实验研究其对MG 63骨肉瘤细胞增殖、侵袭、迁移能力的影响,采用RFQ PCR和Western blot分别从基因和蛋白的水平检测MG 63骨肉瘤细胞侵袭性相关因子基质金属酶(MMP 9)的表达及血管内皮生长因子(VEGF)的表达。结果 转染MG 63骨肉瘤细胞后,实验组与阴性对照组和空白对照组比较,通过RFQ PCR和Western blot检测COX 2基因表达降低约90%(P0.05),MTT检测MG 63骨肉瘤细胞增值能力明显受到抑制(P0.05),Transwell实验检测MG 63骨肉瘤细胞侵袭、迁移能力明显下降(P0.05),经RFQ PCR、Western blot检测侵袭性相关因子MMP 9和血管内皮生长因子VEGF的mRNA及蛋白表达降低(P0.05)。空白对照组和阴性对照组比较无明显变化,差异无统计学意义(P0.05)。结论 人MG 63骨肉瘤细胞COX 2基因被抑制后,MG 63骨肉瘤细胞增值、侵袭、迁移能力明显下降。  相似文献   

15.
16.
Adipocyte dysfunction is associated with the development of obesity. This study shows that 6-thioinosine inhibits adipocyte differentiation. The mRNA levels of PPAR γ and C/EBPα, but not C/EBPβ and δ, were reduced by 6-thioinosine. Moreover, the mRNA levels of PPAR γ target genes (LPL, CD36, aP2, and LXRα) were down-regulated by 6-thioinosine. We also demonstrated that 6-thioinosine inhibits the transactivation activity and the mRNA level of PPAR γ. Additionally, attempts to elucidate a possible mechanism underlying the 6-thioinosine-mediated effects revealed that 6-thioinosine induced iNOS gene expression without impacting eNOS expression, and that this was mediated through activation of AP-1, especially, JNK. In addition, 6-thioinosine was found to operate upstream of MEKK-1 in JNK activation signaling. Taken together, these findings suggest that the inhibition of adipocyte differentiation by 6-thioinosine occurs primarily through the reduced expression of PPAR γ, which is mediated by upregulation of iNOS via the activation of JNK.  相似文献   

17.
Lysophosphatidylcholine (LysoPC) has been shown to induce the expression of inflammatory proteins, including cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6), associated with cardiac fibrosis. Here, we demonstrated that LysoPC-induced COX-2 and IL-6 expression was inhibited by silencing NADPH oxidase 1, 2, 4, 5; p65; and FoxO1 in human cardiac fibroblasts (HCFs). LysoPC-induced IL-6 expression was attenuated by a COX-2 inhibitor. LysoPC-induced responses were mediated via the NADPH oxidase-derived reactive oxygen species-dependent JNK1/2 phosphorylation pathway, leading to NF-κB and FoxO1 activation. In addition, we demonstrated that both FoxO1 and p65 regulated COX-2 promoter activity stimulated by LysoPC. Overexpression of wild-type FoxO1 and S256D FoxO1 enhanced COX-2 promoter activity and protein expression in HCFs. These results were confirmed by ex vivo studies, where LysoPC-induced COX-2 and IL-6 expression was attenuated by the inhibitors of NADPH oxidase, NF-κB, and FoxO1. Our findings demonstrate that LysoPC-induced COX-2 expression is mediated via NADPH oxidase-derived reactive oxygen species generation linked to the JNK1/2-dependent pathway leading to FoxO1 and NF-κB activation in HCFs. LysoPC-induced COX-2-dependent IL-6 expression provided novel insights into the therapeutic targets of the cardiac fibrotic responses.  相似文献   

18.
Reduced hepatic expression levels of bromodomain-containing protein 7 (BRD7) have been suggested to play a role in the development of glucose intolerance in obesity. However, the molecular mechanism by which BRD7 regulates glucose metabolism has remained unclear. Here, we show that BRD7 increases phosphorylation of glycogen synthase kinase 3β (GSK3β) in response to activation of the insulin receptor-signaling pathway shortly after insulin stimulation and the nutrient-sensing pathway after feeding. BRD7 mediates phosphorylation of GSK3β at the Serine 9 residue and this effect on GSK3β occurs even in the absence of AKT activity. Using both in vitro and in vivo models, we further demonstrate that BRD7 mediates phosphorylation of ribosomal protein S6 kinase (S6K) and leads to increased phosphorylation of the eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and, therefore, relieves its inhibition of the eukaryotic translation initiation factor 4E (eIF4E). However, the increase in phosphorylation of 4E-BP1 with BRD7 overexpression is blunted in the absence of AKT activity. In addition, using liver-specific BRD7 knockout (LBKO) mice, we show that BRD7 is required for mTORC1 activity on its downstream molecules. These findings show a novel basis for understanding the molecular dynamics of glucose metabolism and suggest the unique function of BRD7 in the regulation of glucose homeostasis.  相似文献   

19.
After the transfection of -1,3-fucosyltransferase (FucT)-VII cDNA into H7721 human hepatocarcinoma cells, the protein expression of some cyclins, cyclin-dependent kinases (CDKs) and cyclin-dependent kinase inhibitors (CDIs) p16INK4 and p21waf1/Cip1 were unchanged. However, CDI p27Kip1 protein, both the total amount and the amount that bound to CDK2, but not its mRNA, was significantly reduced. The de-inhibited CDK2 stimulated the phosphorylation of retinoblastoma (Rb) protein and facilitated the G1/S transition and growth rate of the cells. The decrease of p27Kip1 protein, the increase of CDK2 activity and Rb phosphorylation, as well as the cell growth and percentage of S phase cells were correlated to the increased amount of cell surface sialyl Lewis X (SLex) antigen in cells with different -1,3-FucT-VII expression. The reduction in p27Kip1 and the difference in its expression among different transfected cells were blocked by the SLex antibody KM93 in a dose-dependent manner, indicating that p27Kip1 expression was influenced by -1,3-FucT-VII and its product SLex. The MEK/MAPK signaling pathway was more important than the PI-3K pathway in the regulation of p27Kip1 expression.Received 5 August 2004; received after revision 25 October 2004; accepted 11 November 2005  相似文献   

20.
Mammalian target of rapamycin (mTOR) is a protein serine/threonine kinase that controls a wide range of growth-related cellular processes. In the past several years, many factors have been identified that are involved in controlling mTOR activity. Those factors in turn are regulated by diverse signaling cascades responsive to changes in intracellular and environmental conditions. The molecular connections between mTOR and its regulators form a complex signaling network that governs cellular metabolism, growth and proliferation. In this review, we discuss some key factors in mTOR regulation and mechanisms by which these factors control mTOR activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号