首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen GQ  Cui C  Mayer ML  Gouaux E 《Nature》1999,402(6763):817-821
Ion channels are molecular pores that facilitate the passage of ions across cell membranes and participate in a range of biological processes, from excitatory signal transmission in the mammalian nervous system to the modulation of swimming behaviour in the protozoan Paramecium. Two particularly important families of ion channels are ionotropic glutamate receptors (GluRs) and potassium channels. GluRs are permeable to Na+, K+ and Ca2+, are gated by glutamate, and have previously been found only in eukaryotes. In contrast, potassium channels are selective for K+, are gated by a range of stimuli, and are found in both prokaryotes and eukaryotes. Here we report the discovery and functional characterization of GluR0 from Synechocystis PCC 6803, which is the first GluR found in a prokaryote. GluR0 binds glutamate, forms potassium-selective channels and is related in amino-acid sequence to both eukaryotic GluRs and potassium channels. On the basis of amino-acid sequence and functional relationships between GluR0 and eukaryotic GluRs, we propose that a prokaryotic GluR was the precursor to eukaryotic GluRs. GluR0 provides evidence for the missing link between potassium channels and GluRs, and we suggest that their ion channels have a similar architecture, that GluRs are tetramers and that the gating mechanisms of GluRs and potassium channels have some essential features in common.  相似文献   

2.
应用耦合通道光学势方法计算低能正电子同钾原子碰撞的总散射截面. 在 P 空间的耦合积分方程中包括 8 个能量最低的散射通道, 用 Q 空间的复光学势描述的正负电子偶素所形成的通道和电离通道, 被附加到 P 空间的通道耦合中. 计算结果表明, 电离和正负电子偶素的形成在正电子和钾原子碰撞散射体系中起着重要的作用.  相似文献   

3.
hERG potassium channels are essential for normal electrical activity in the heart. Inherited mutations in the HERG gene cause long QT syndrome, a disorder that predisposes individuals to life-threatening arrhythmias. Arrhythmia can also be induced by a blockage of hERG channels by a surprisingly diverse group of drugs. This side effect is a common reason for drug failure in preclinical safety trials. Insights gained from the crystal structures of other potassium channels have helped our understanding of the block of hERG channels and the mechanisms of gating.  相似文献   

4.
Cloning of a probable potassium channel gene from mouse brain   总被引:23,自引:0,他引:23  
B L Tempel  Y N Jan  L Y Jan 《Nature》1988,332(6167):837-839
Potassium channels comprise a diverse class of ion channels important for neuronal excitability and plasticity. The recent cloning of the Shaker locus from Drosophila melanogaster has provided a starting point for molecular studies of potassium channels. Predicted Shaker proteins appear to be integral membrane proteins and have a sequence similar to the sequence of the S4 segment of the vertebrate sodium channel, where the S4 segment has been proposed to be the voltage sensor. Expression studies in frog oocytes confirm that Shaker encodes a component of a potassium channel (the A channel) that conducts a fast transient potassium current. Here we report the isolation of complementary DNA clones from the mouse brain, the nucleotide sequences of which predict a protein remarkably similar to the Shaker protein. The strong conservation of the predicted protein sequence in flies and mammals suggests that these mouse clones encode a potassium channel component and that the conserved amino acids may be essential to some aspect of potassium channel function.  相似文献   

5.
H Brew  P T Gray  P Mobbs  D Attwell 《Nature》1986,324(6096):466-468
A major function of glial cells in the central nervous system is to buffer the extracellular potassium concentration, [K+]o. A local rise in [K+]o causes potassium ions to enter glial cells, which have membranes that are highly permeable to K+; potassium then leaves the glial cells at other locations where [K+]o has not risen. We report here the first study of the individual ion channels mediating potassium buffering by glial cells. The patch-clamp technique was employed to record single channel currents in Müller cells, the radial glia of the vertebrate retina. Those cells have 94% of their potassium conductance in an endfoot apposed to the vitreous humour, causing K+ released from active retinal neurones to be buffered preferentially to the vitreous. Recordings from patches of endfoot and cell body membrane show that a single type of inward-rectifying K+ channel mediates potassium buffering at both cell locations. The non-uniform density of K+ conductance is due to a non-uniform distribution of one type of K+ channel, rather than to the cell expressing high conductance channels at the endfoot and low conductance channels elsewhere on the cell.  相似文献   

6.
为了检测电压门控钾通道阻断剂4-氨基吡啶(4-AP)、四乙胺(TEA)和ATP敏感钾通道阻断剂格列苯脲(Glibenclamide,Gli)对胶质瘤细胞迁移和侵袭的影响,选用人胶质瘤细胞系U87和U251,其中钾通道阻断剂4-AP、TEA及Gli处理作为实验组,未处理的作为对照组.采用划痕实验和Transwell小室法检测钾通道阻断剂对U87和U251细胞迁移和侵袭能力的影响; Western blot检测药物处理后细胞高迁移率蛋白B1(high mobility group protein B1,HMGB1)表达水平.结果表明:5 mmol·L-1的4-AP、40 mmol·L-1的TEA及400 μmol·L-1的Gli可以显著抑制胶质瘤细胞的迁移、侵袭,并降低HMGB1表达水平.电压门控钾通道和ATP敏感钾通道对胶质瘤细胞迁移和侵袭具有重要调控作用,3种钾通道阻断剂对胶质瘤细胞迁移和侵袭有不同程度的抑制作用,可能通过调控HMGB1相关通路实现.  相似文献   

7.
Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane   总被引:10,自引:0,他引:10  
A E Spruce  N B Standen  P R Stanfield 《Nature》1985,316(6030):736-738
It has been known for some years that skeletal muscle develops a high potassium permeability in conditions that produce rigor, where ATP concentrations are low and intracellular Ca2+ is high. It has seemed natural to attribute this high permeability to K channels that are opened by internal Ca2+, especially as the presence of such channels has been demonstrated in myotubes and in the transverse tubular membrane system of adult skeletal muscle. However, as we show here, the surface membrane of frog muscle contains potassium channels that open at low internal concentrations of ATP (less than 2 mM). ATP induces closing of these channels without being split, apparently holding the channels in one of a number of closed states. The channels have at least two open states whose dwell times are voltage-dependent. Surprisingly, we find that these may be the most common K channels of the surface membrane of skeletal muscle.  相似文献   

8.
A biological role for prokaryotic ClC chloride channels   总被引:12,自引:0,他引:12  
Iyer R  Iverson TM  Accardi A  Miller C 《Nature》2002,419(6908):715-718
An unexpected finding emerging from large-scale genome analyses is that prokaryotes express ion channels belonging to molecular families long studied in neurons. Bacteria and archaea are now known to carry genes for potassium channels of the voltage-gated, inward rectifier and calcium-activated classes, ClC-type chloride channels, an ionotropic glutamate receptor and a sodium channel. For two potassium channels and a chloride channel, these homologues have provided a means to direct structure determination. And yet the purposes of these ion channels in bacteria are unknown. Strong conservation of functionally important sequences from bacteria to vertebrates, and of structure itself, suggests that prokaryotes use ion channels in roles more adaptive than providing high-quality protein to structural biologists. Here we show that Escherichia coli uses chloride channels of the widespread ClC family in the extreme acid resistance response. We propose that the channels function as an electrical shunt for an outwardly directed virtual proton pump that is linked to amino acid decarboxylation.  相似文献   

9.
S Y Chiu  J M Ritchie 《Nature》1980,284(5752):170-171
Horakova et al. were the first to observe that the phase of late outward current carried by potassium ions in frog and squid nerve is virtually absent in voltage-clamped rat nodes of Ranvier. This observation has been recently confirmed by Chiu et al. in rabbit nodes of Ranvier, suggesting that the nodal membrane in the mammal generally has few if any potassium channels. The present voltage-clamp experiments show that large potassium currents can, however, be produced in normal rabbit nodes of Ranvier by acute treatment designed to loosen the myelin from the axonal membrane. From this we conclude that whereas potassium channels are absent in the mammalian nodal membrane, they are normally present in the internodal axonal membrane at least in the paranodal region.  相似文献   

10.
P Bregestovski  A Redkozubov  A Alexeev 《Nature》1986,319(6056):776-778
Both voltage-activated potassium channels and the concentration of free intracellular calcium have been implicated in the activation of T lymphocytes. Using the patch-clamp technique, we now show an unexpected relationship between the level of intracellular calcium [Ca]i in human lymphocytes and the amplitude of a voltage-dependent current: the elevation of [Ca]i decreases the potassium conductance. This is in contrast to other systems where [Ca]i activates K+ channels. Our results suggest that the level of intracellular calcium regulates the effective number of K+ channels capable of being activated.  相似文献   

11.
电压门控性钾离子通道对人骨肉瘤细胞增殖的影响   总被引:1,自引:0,他引:1  
研究钾离子通道在人骨肉瘤细胞的表达及通道抑制剂对人骨肉瘤细胞系增殖的影响.通过RT-PCR对三株人骨肉瘤细胞系MG63、Saos-2和SOSP-9607中相关钾离子通道,包括kv1.1, kv1.3, kv1.5, kv2.1, kv3.3/3.4, kv4.1, kv5.1, kv9.3, herg, heag 和kcnq1的基因表达进行检测;用非特异性的电压门控性钾离子通道抑制剂4-AP(4-aminopyridine,4-氨基吡啶)和氯化铯(CsCl),特异性的HERG、HEAG 、和KCa通道抑制剂E-4031、丙咪嗪(imipramine) 和TEA (tetraethylammonium,四乙铵)通过MTT法检测抑制剂对三株人骨肉瘤细胞系MG63、Saos-2和SOSP-9607细胞增殖的影响.通过RT-PCR发现kv1.3, kv1.5, kv2.1, kv3.3/3.4, kv4.1, kv9.3, herg和heag通道基因在三株骨肉瘤细胞系中均有表达,而kv5.1通道基因只在MG63细胞中表达,kcnq1通道基因只在SOSP-607和MG63细胞中表达.MTT法检测发现:E-4031, imipramine 和TEA 对三株骨肉瘤细胞的增殖没有明显的影响,而4-AP药物浓度在3 mol和5 mol时对细胞增殖影响明显.CSCL药物浓度在5 mol时对细胞增殖也有影响,但影响程度较4-AP小.提示钾离子通道在RNA水平广泛地表达于实验的三株人骨肉瘤细胞中,但只有电压门控性钾离子通道参与细胞增殖过程的调节.  相似文献   

12.
del Camino D  Holmgren M  Liu Y  Yellen G 《Nature》2000,403(6767):321-325
The structure of the bacterial potassium channel KcsA has provided a framework for understanding the related voltage-gated potassium channels (Kv channels) that are used for signalling in neurons. Opening and closing of these Kv channels (gating) occurs at the intracellular entrance to the pore, and this is also the site at which many open channel blockers affect Kv channels. To learn more about the sites of blocker binding and about the structure of the open Kv channel, we investigated here the ability of blockers to protect against chemical modification of cysteines introduced at sites in transmembrane segment S6, which contributes to the intracellular entrance. Within the intracellular half of S6 we found an abrupt cessation of protection for both large and small blockers that is inconsistent with the narrow 'inner pore' seen in the KcsA structure. These and other results are most readily explained by supposing that the structure of Kv channels differs from that of the non-voltage-gated bacterial channel by the introduction of a sharp bend in the inner (S6) helices. This bend would occur at a Pro-X-Pro sequence that is highly conserved in Kv channels, near the site of activation gating.  相似文献   

13.
Renal salt loss in Bartter's syndrome is caused by impaired transepithelial transport in the loop of Henle. Sodium chloride is taken up apically by the combined activity of NKCC2 (Na+-K--2Cl- cotransporters) and ROMK potassium channels. Chloride ions exit from the cell through basolateral ClC-Kb chloride channels. Mutations in the three corresponding genes have been identified that correspond to Bartter's syndrome types 1-3. The gene encoding the integral membrane protein barttin is mutated in a form of Bartter's syndrome that is associated with congenital deafness and renal failure. Here we show that barttin acts as an essential beta-subunit for ClC-Ka and ClC-Kb chloride channels, with which it colocalizes in basolateral membranes of renal tubules and of potassium-secreting epithelia of the inner ear. Disease-causing mutations in either ClC-Kb or barttin compromise currents through heteromeric channels. Currents can be stimulated further by mutating a proline-tyrosine (PY) motif on barttin. This work describes the first known beta-subunit for CLC chloride channels and reveals that heteromers formed by ClC-K and barttin are crucial for renal salt reabsorption and potassium recycling in the inner ear.  相似文献   

14.
D M Papazian  L C Timpe  Y N Jan  L Y Jan 《Nature》1991,349(6307):305-310
Voltage-dependent potassium, sodium and calcium ion channels may share a common mechanism of activation, in which the conserved S4 sequence acts as the primary voltage sensor. Site-directed mutagenesis of the S4 sequence of the Shaker potassium channel and electrophysiological analysis suggest that voltage-dependent activation involves the S4 sequence but is not solely due to electrostatic interactions.  相似文献   

15.
The breakup of a spiral wave by blockade of sodium and potassium channels in a small-world network of Hodgkin-Huxley neurons is investigated in detail.The influence of ion channel block in poisoned excitable membrane patches of a certain size is measured,by varying channel noise and channel densities resulting from the change in conductance,For example,tetraethylammonium is known to cause a block(poisoning) of potassium channels,while tetrodotoxin blocks sodium channels.We observed the occurrence of spiral waves,which are ordered waves believed to play an important role in facilitating the propagation of electric signals across quiescent regions of the brain.In this paper,the effect of channel block was measured by the factors xK and xNa,which represent the ratios of unblocked,or active,ion channels,to the overall number of potassium or sodium ion channels,respectively.To quantify these observations,we use a simple but robust synchronization measure,which succinctly captures the transition from spiral waves to other collective states,such as broken segments resulting from the breakup of the spiral wave.The critical thresholds of channel block can be inferred from the abrupt changes occurring in plots of the synchronization measure against different values of xK and xNa.Notably,small synchronization factors can be tightly associated with states where the formation of spiral waves is robust to mild channel block.  相似文献   

16.
D J Green  R Gillette 《Nature》1983,306(5945):784-785
The second messenger cyclic AMP has been variously reported to affect the electrical activity of different neurones by decreasing outward potassium current, increasing outward current and increasing inward current. The recently developed patch clamp method of recording single ionic channels allows direct measurement of the action of cyclic AMP on membrane conductances. Using the patch clamp, the closure of potassium channels by cyclic AMP has previously been documented on the single channel level. We report here that in a bursting molluscan neurone, intracellular iontophoresis of cyclic AMP under voltage clamp elicits an inward current of maximal amplitude in the pacemaker voltage region. Patch-clamp analysis reveals inward channels whose opening frequency is augmented by cyclic AMP stimulation and whose activity accompanies burst episodes. Channel opening frequency is significantly increased by depolarization of the whole soma, but not by focal depolarization of the patch; this may reflect the action of another second messenger that acts in concert with cyclic AMP to confer voltage sensitivity.  相似文献   

17.
Anion channels activated by adrenaline in cardiac myocytes   总被引:10,自引:0,他引:10  
T Ehara  K Ishihara 《Nature》1990,347(6290):284-286
In heart cells, the catecholamine-activated cyclic AMP system regulates calcium and potassium channels. We report here a novel class of chloride channels that can be activated by adrenaline in mammalian ventricular cells. Like the agonist-activated Cl- channel currents of airway and colonic epithelial cells, the cardiac Cl(-)-channel current shows outward rectification. But the unit conductance of cardiac Cl- channels is smaller than that of epithelial Cl- channels. The cardiac Cl- channel is functionally voltage-independent, in contrast to the Cl- channel in colonic epithelial cells. This channel could be responsible for the beta-catecholamine-induced increase in cardiac membrane conductance that has been attributed to activation of a Cl- current. Thus, sympathetic control of cardiac electrical activity involves not only the voltage-dependent, excitation-related cation channels, but also anion channels that generate a steady current.  相似文献   

18.
Alabi AA  Bahamonde MI  Jung HJ  Kim JI  Swartz KJ 《Nature》2007,450(7168):370-375
Voltage-sensing domains enable membrane proteins to sense and react to changes in membrane voltage. Although identifiable S1-S4 voltage-sensing domains are found in an array of conventional ion channels and in other membrane proteins that lack pore domains, the extent to which their voltage-sensing mechanisms are conserved is unknown. Here we show that the voltage-sensor paddle, a motif composed of S3b and S4 helices, can drive channel opening with membrane depolarization when transplanted from an archaebacterial voltage-activated potassium channel (KvAP) or voltage-sensing domain proteins (Hv1 and Ci-VSP) into eukaryotic voltage-activated potassium channels. Tarantula toxins that partition into membranes can interact with these paddle motifs at the protein-lipid interface and similarly perturb voltage-sensor activation in both ion channels and proteins with a voltage-sensing domain. Our results show that paddle motifs are modular, that their functions are conserved in voltage sensors, and that they move in the relatively unconstrained environment of the lipid membrane. The widespread targeting of voltage-sensor paddles by toxins demonstrates that this modular structural motif is an important pharmacological target.  相似文献   

19.
BK 通道,即钙离子激活的大电导钾离子通道,它通过产生快速的后超极化(fA HP)来控制动作电位的持续时间、发放频率。为研究BK通道在鸣禽鸣唱学习中的作用提供形态学依据,用免疫组化法观察了BK通道在成年雄性斑胸草雀脑中的分布。证实了其在端脑、基底节纹状体、中脑、小脑等脑区都有广泛的表达,其中 RA、HVC、LM AN、X区、DM 等与鸣唱系统相关的核团都有显著的表达。这暗示了BK通道可能与鸣禽鸣唱信息整合、听觉反馈、鸣曲可塑性和稳定性以及呼吸调节都有密不可分的联系。  相似文献   

20.
Sato C  Ueno Y  Asai K  Takahashi K  Sato M  Engel A  Fujiyoshi Y 《Nature》2001,409(6823):1047-1051
Voltage-sensitive membrane channels, the sodium channel, the potassium channel and the calcium channel operate together to amplify, transmit and generate electric pulses in higher forms of life. Sodium and calcium channels are involved in cell excitation, neuronal transmission, muscle contraction and many functions that relate directly to human diseases. Sodium channels--glycosylated proteins with a relative molecular mass of about 300,000 (ref. 5)--are responsible for signal transduction and amplification, and are chief targets of anaesthetic drugs and neurotoxins. Here we present the three-dimensional structure of the voltage-sensitive sodium channel from the eel Electrophorus electricus. The 19 A structure was determined by helium-cooled cryo-electron microscopy and single-particle image analysis of the solubilized sodium channel. The channel has a bell-shaped outer surface of 135 A in height and 100 A in side length at the square-shaped bottom, and a spherical top with a diameter of 65 A. Several inner cavities are connected to four small holes and eight orifices close to the extracellular and cytoplasmic membrane surfaces. Homologous voltage-sensitive calcium and tetrameric potassium channels, which regulate secretory processes and the membrane potential, may possess a related structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号