首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The eosinophil ribonucleases, eosinophil-derived neurotoxin (EDN/RNase 2) and eosinophil cationic protein (ECP/RNase 3) are two closely related proteins with intriguing functional and evolutionary properties. While both EDN and ECP maintain the structural and catalytic residues typical of the RNase A superfamily, the role of ribonuclease activity in the physiologic function of these proteins remains unclear. The biochemistry and physiology of EDN, ECP and the recently discovered ribonuclease k6 (RNase 6) will be reviewed in this chapter.  相似文献   

2.
The present study reports for the first time a dual antiglioma effect of the well-known antidiabetic drug metformin. In low-density cultures of the C6 rat glioma cell line, metformin blocked the cell cycle progression in G0/G1 phase without inducing significant cell death. In confluent C6 cultures, on the other hand, metformin caused massive induction of caspase-dependent apoptosis associated with c-Jun N-terminal kinase (JNK) activation, mitochondrial depolarization and oxidative stress. Metformin-triggered apoptosis was completely prevented by agents that block mitochondrial permeability transition (cyclosporin A) and oxygen radical production (N-acetylcisteine), while the inhibitors of JNK activation (SP600125) or glycolysis (sodium fluoride, iodoacetate) provided partial protection. The antiglioma effect of metformin was reduced by compound C, an inhibitor of AMP-activated protein kinase (AMPK), and was mimicked by the AMPK agonist AICAR. Similar effects were observed in the human glioma cell line U251, while rat primary astrocytes were completely resistant to the antiproliferative and proapoptotic action of metformin. Received 14 February 2007; received after revision 26 March 2007; accepted 3 April 2007  相似文献   

3.
Escherichia coli penicillin-binding protein PBP3 is a key element in cell septation. It is presumed to catalyse a transpeptidation reaction during biosynthesis of the septum peptidoglycan but, in vitro, its enzymatic activity has only been demonstrated with thiolester analogues of the natural peptide substrate. It has no detectable transglycosylase activity with lipid II as substrate. This tripartite protein is constructed of an N-terminal membrane anchor-containing module that is essential for cell septation, a non-penicillin-binding (n-PB) module of unknown function and a C-terminal penicillin-binding (PB) module exhibiting all the characteristic motifs of penicilloyl serine transferases. The n-PB module, which is required for the folding and stability of the PB module, may provide recognition sites for other cell division proteins. Initiation of septum formation is not PBP3-dependent but rests on the appearance of the FtsZ ring, and is thus penicillin-insensitive. The control of PBP3 activity during the cell cycle is briefly discussed.  相似文献   

4.
Summary Treatment of 3T3 cell plasma membranes with glycosidase enzymes decreased their ability to inhibit cell growth and also decreased their binding to 3T3 cells. This suggests that carbohydrate is required for complete function of inhibitory activity and that inhibition is associated with membrane adhesion.  相似文献   

5.
Perchloric acid-soluble protein (PSP) may play an important role in the regulation of cellular physiological functions because it has been highly conserved throughout evolution; however, this role has not been well elucidated. In previous reports, we suggested that PSP regulates cell proliferation. In this study, we examined the effect of PSP expression on proliferation of the normal rat kidney cell line NRK-52E, the rat hepatocyte cell line RLN-10, and the rat hepatoma cell line dRLh-84. Cells transfected with pcDNA-sense-PSP (pcDNA-S-PSP) over-expressed PSP mRNA and protein, and cell proliferation of the transfected cells was suppressed compared with that of cells transfected with pcDNA-empty (pcDNA-E). Cell viability of pcDNA-S-PSP-transfected cells was similar to that of pcDNA-E-transfected cells. Thus, over-expression of PSP suppresses cell proliferation without any influence on cell viability. These findings are the first to report an inhibitory activity of PSP on cell proliferation. Received 27 April 2001; received after revision 8 June 2001; accepted 8 June 2001  相似文献   

6.
The product of the MDR1 gene (P-gp) has been implicated in the transport of cholesterol from plasma membrane to endoplasmic reticulum for esterification. In previous studies on leukemia cell lines, we suggested that cholesterol esterification may regulate the rate of cell growth and that the MDR1 gene might be involved in this process by modulating intracellular cholesterol esters levels. To further investigate this matter, the rate of cell growth, cholesterol metabolism, expression of the MDR1 gene, and P-gp activity were compared in KB cell lines displaying differences in expression and function of P-gp (drug-sensitive phenotype versus MDR phenotype). The rate of cell growth correlated with cholesterol esterification in all KB cell lines, whereas the over-expression of MDR1 observed in the MDR cell lines was not always associated with an increased capacity of cells to esterify cholesterol. Two known inhibitors of P-gp activity, progesterone and verapamil, strongly inhibited both cholesterol esterification and cell proliferation in all KB cell lines, but they affected intracellular accumulation of labeled vinblastine only in MDR cell lines. These results further support a role for cholesterol esters in the regulation of cell growth and suggest that the P-gp expressed in MDR KB cells is not involved in the general process leading to cholesterol esterification. Received 14 February 2000; received after revision 10 April 2000; accepted 8 May 2000  相似文献   

7.
A ribonuclease associated with vaccinia virus can be detected when reduced concentrations of nucleotides are used for an in vitro RNA synthesis assay. The non-viral origin of this ribonuclease may be inferred from its external location and from its variable activity on different purified virus stocks. The detection of this ribonuclease activity on purified virus grown without foetal Calf serum may suggest that this enzyme is of cellular origin.  相似文献   

8.
The killing mediated by cytotoxic T lymphocytes (CTL) represents an important mechanism in the immune defence against tumors and virus infections. The lytic mechanism has been proposed to consist of a polarized secretion of granule-stored molecules, occurring on effector-target cell contact. By electron microscopy, membrane deposited, pore-like lesions are detected on the target cell membrane during cytolysis by CTL. These structures resembled strikingly pores formed during complement attack. Granules of CTL isolated by nitrogen cavitation and Percoll gradient centrifugation were shown to retain cytotoxic activity. Further purification of proteins stored in these granules led to the discovery of a membranolytic protein named perforin which was capable of polymerizing into pore-like structures. In addition to this cytolytic protein, a set of serine esterases was found as well as lysosomal enzymes and proteoglycans, whose function are not yet clearly defined. The role of perforin in the cytotoxic process is currently being explored by ablating the active gene in mice.  相似文献   

9.
The killing mediated by cytotoxic T lymphocytes (CTL) represents an important mechanism in the immune defence against tumors and virus infections. The lytic mechanism has been proposed to consist of a polarized secretion of granule-stored molecules, occurring on effector-target cell contact. By electron microscopy, membrane deposited, pore-like lesions are detected on the target cell membrane during cytolysis by CTL. These structures resembled strikingly pores formed during complement attack.Granules of CTL isolated by nitrogen cavitation and Percoll gradient centrifugation were shown to retain cytotoxic activity. Further purification of proteins stored in these granules led to the discovery of a membranolytic protein named perforin which was capable of polymerizing into pore-like structures. In addition to this cytolytic protein, a set of serine esterases was found as well as lysosomal enzymes and proteoglycans, whose function are not yet clearly defined. The role of perforin in the cytotoxic process is currently being explored by ablating the active gene in mice.  相似文献   

10.
Eosinophils are traditionally thought to form part of the innate immune response against parasitic helminths acting through the release of cytotoxic granule proteins. However, they are also a central feature in asthma. From their development in the bone marrow to their recruitment to the lung via chemokines and cytokines, they form an important component of the inflammatory milieu observed in the asthmatic lung following allergen challenge. A wealth of studies has been performed in both patients with asthma and in mouse models of allergic pulmonary inflammation to delineate the role of eosinophils in the allergic response. Although the long-standing association between eosinophils and the induction of airway hyper-responsiveness remains controversial, recent studies have shown that eosinophils may also promote airway remodelling. In addition, emerging evidence suggests that the eosinophil may also serve to modulate the immune response. Here we review the highly co-ordinated nature of eosinophil development and trafficking and the evolution of the eosinophil as a multi-factoral leukocyte with diverse functions in asthma. Received 6 December 2006; received after revision 11 January 2007; accepted 15 February 2007  相似文献   

11.
CYLD is a protein with tumor suppressor properties which was originally discovered associated with cylindromatosis, an inherited cancer exclusively affecting the folicullo-sebaceous-apocrine unit of the epidermis. CYLD exhibits deubiquitinating activity and acts as a negative regulator of NF-κB and JNK signaling through its interaction with NEMO and TRAF2. Recent data suggest that this is unlikely to be its unique function in vivo. CYLD has also been shown to control other seemingly disparate cellular processes, such as proximal T cell receptor signaling, TrkA endocytosis and mitosis. In each case, this enzyme appears to act by regulating a specific type of polyubiquitination, K63 polyubiquitination, that does not result in recognition and degradation of proteins by the proteasome but instead controls their activity through diverse mechanisms. Received 6 October 2007; received after revision 2 November 2007; accepted 23 November 2007  相似文献   

12.
In recent years the interest in antimicrobial proteins and peptides and their mode of action has been rapidly increasing due to their potential to prevent and combat microbial infections in all areas of life. A detailed knowledge about the function of such proteins is the most important requirement to consider them for future application. Our research in recent years has been focused on the low molecular weight, cysteine-rich and cationic antifungal protein PAF from Penicillium chrysogenum, which inhibits the growth of opportunistic zoo-pathogens including Aspergillus fumigatus, numerous plant-pathogenic fungi and the model organism Aspergillus nidulans. So far, the experimental results indicate that PAF elicits hyperpolarization of the plasma membrane and the activation of ion channels, followed by an increase in reactive oxygen species in the cell and the induction of an apoptosis-like phenotype. Detailed knowledge about the molecular mechanism of action of antifungal proteins such as PAF contributes to the development of new antimicrobial strategies that are urgently needed. Received 09 August 2007; received after revision 17 September 2007; accepted 19 September 2007  相似文献   

13.
Coronavirus envelope protein is a small membrane protein and minor component of the virus particles. It plays important roles in virion assembly and morphogenesis, alteration of the membrane permeability of host cells and virus-host cell interaction. Here we review recent progress in characterization of the biochemical properties, membrane topology and functions of the protein. Received 27 February 2007; received after revision 4 April 2007; accepted 26 April 2007  相似文献   

14.
Olfactory ensheathing cells have been used in several studies to promote repair in the injured spinal cord. However, cellular interaction between olfactory ensheathing cells and glial cells induced to be reactive in the aftermath of injury site has not been investigated. Using an in vitro model of astrogliosis, we show that reactive astrocytes expressed significantly less glial fibrillary acidic protein (GFAP) when cultured both in direct contact with olfactory ensheathing cells and when the two cell types were separated by a porous membrane. Immunofluorescence staining also suggested that reactive astrocytes showed decreased chondroitin sulfate proteoglycans in the presence of olfactory ensheathing cells, although the reduction was not statistically significant. No down-regulation of GFAP was observed when reactive astrocytes were similarly cultured with Schwann cells. Cell viability assay and bromodeoxyuridine uptake showed that proliferation of reactive astrocytes was significantly increased in the presence of olfactory ensheathing cells and Schwann cells. Received 27 February 2007; received after revision 30 March 2007; accepted 3 April 2007  相似文献   

15.
16.
Dexamethasone enhances CTLA-4 expression during T cell activation   总被引:4,自引:0,他引:4  
T cell activation is enhanced by the costimulatory interaction of B7 on antigen-presenting cells and CD28 on T cells, resulting in long-term T cell proliferation, differentiation and production of large amounts of cytokines, such as interleukin (IL)-2. CTLA-4 is a co-stimulation receptor that shares 31% homology with CD28 and binds B7 family members with higher affinity. CTLA-4 is transiently expressed intracellularly and on the cell surface following activation of T cells. We have studied the kinetics of CTLA-4 expression and the effects of dexamethasone on CTLA-4 expression during T cell activation in cultures of mouse spleen cells stimulated by a mixture of immobilized anti-CD3 and anti-CD28 monoclonal antibodies (anti-CD3/CD28 mAb) or concanavalin A (ConA). CTLA-4 expression peaked on day 2 and returned to background levels after 7 days. Dexamethasone was found to potentiate CTLA-4 expression in a dose-dependent manner with an EC50 effective concentration 50%) of about 10−8 M. In contrast, other immunosuppressive agents, such as rapamycin or cyclosporin A had no or an inhibitory effect on CTLA-4 expression, respectively. Dexamethasone also stimulated CD28 expression, but inhibited IL-2R expression during anti-CD3/CD28 mAb-induced mouse splenic T cell activation. Western blot analyses of lysates of activated mouse T cells showed that dexamethasone increased CTLA-4 protein levels twofold during anti-CD3/CD28 mAb-induced activation. Dexamethasone also enhanced CTLA-4 messenger RNA twofold as quantified by ribonuclease protection assay. The effects of dexamethasone on CTLA-4 expression were glucocorticoid-specific and completely inhibited by the glucocorticoid receptor antagonist mifepristone (RU486), indicating that the effect of dexamethasone on CTLA-4 expression is mediated through the glucocorticoid receptor. In conclusion, the immunosuppressive agent dexamethasone actually stimulates CTLA-4 expression, which is involved in downregulation of T cell activation. Received 19 May 1999; received after revision 13 July 1999; accepted 13 July 1999  相似文献   

17.
18.
Matrix metalloproteinase-7 (MMP-7, matrilysin- 1) modulates crucial biological events by processing many epithelial cell surface-associated effectors. We addressed MMP-7 interaction with human epithelial cells and its resulting activity. In human endometrium, a model of controlled tissue remodeling, proMMP-7 was diffusely immunolocalized inside epithelial cells, whereas MMP-7 delineated their entire plasma membrane. Endometrial explants preferentially retained active MMP-7, but not proMMP-7. Endometrial epithelial cells and carcinoma cells from various tissues bound active MMP-7. Endometrial carcinoma-derived Ishikawa cells showed high affinity (KD of ~2.5 nM) and capacity (~260 000 sites per cell) for MMP-7. MMP-7 binding decreased by extracting membrane sterols or interfering with heparan sulfate proteoglycans, and was abrogated by tissue inhibitors of metalloproteinase-2 (TIMP-2) or synthetic MMP inhibitors. Bound MMP-7 not only remained fully active towards a macromolecular substrate but also became resistant to TIMP-2. We conclude that MMP-7-selective targeting to the plasma membrane of epithelial cells promotes its activity by conferring resistance to TIMP-2. A. Berton, C. Selvais: These authors contributed equally to this work. P. J. Courtoy, E. Marbaix, H. Emonard: These authors contributed equally to the supervision of this work. Received 20 September 2006; received after revision 30 November 2006; accepted 18 January 2007  相似文献   

19.
Summary Decreased ribonuclease activity in the supernatant from silica-treated macrophages is associated with the enhanced protein synthesis in granulation-tissue slices incubated in this supernatant, and with the decreased degradation of polysomes in granuloma slices and of polysomes isolated from the granulation tissue. The phagocytized silica particles adsorb ribonuclease and perhaps other proteins and thus remove them from the macrophage supernatant.For financial support we are grateful to the Association of Finnish Life Assurance Companies and to the Medical Research Council in Finland.  相似文献   

20.
γ-Hemolysins are pore-forming toxins which develop from water-soluble monomers by combining two different ‘albeit homologous’ proteins. They form oligomeric pores in both cell and model membranes by undergoing a still poorly understood conformational rearrangement in the stem region. The stem is formed by three β-strands, folded onto the core of the soluble protein and completely extended in the pore. We propose a new model to explain such a process. Seven double-cysteine mutants were developed by inserting one cysteine on the stretch that links the β-hairpin to the core of the protein and another on different positions along the β-strands. The membrane bound protein was blocked in a non-lytic state by S–S bond formation. Six mutants were oxidized as inactive intermediates, but became active after adding DTT. These results demonstrate that the stem extension can be temporarily frozen and that the β-barrel formation occurs by β-strand concerted step-by-step sliding. Received 22 October 2007; received after revision 15 November 2007; accepted 19 November 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号