首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为制备一种新型聚苯胺导电复合材料,以盐酸作为掺杂酸,过硫酸铵作为氧化剂,采用原位聚合法,将从废报纸中提取的纳米纤维素与苯胺单体复合,合成了纳米纤维素增强聚苯胺导电复合材料。分别利用傅里叶红外光谱仪(FTIR)、扫描电镜(SEM)、四探针测试仪、万能力学实验机,测试纳米纤维素增强聚苯胺导电复合材料的化学成分、微观结构、导电率、力学性能。结果表明,当聚苯胺的质量分数达到20%时,掺杂纳米纤维素的聚苯胺复合材料保持了良好的导电性能,同时提高了韧性。  相似文献   

2.
以再生纤维素微球为基底,通过原位聚合法制备了金属离子与植酸共掺杂的聚苯胺/纤维素复合材料,采用扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FT-IR)、X射线粉末衍射仪(XRD)、热重分析仪(TGA)和比表面积分析仪(BET)对材料进行了表征,并探究了不同金属离子掺杂对复合材料电化学性能的影响。结果表明,与纯聚苯胺相比,以再生纤维素微球为基底的聚苯胺/纤维素复合材料的倍率性能、导电性均有大幅提升,锌离子、锂离子分别与植酸共掺杂后制备的聚苯胺/纤维素复合材料,在5 mV/s的扫描速率下比电容分别为343 F/g、332 F/g,远大于单一植酸掺杂的复合材料的比电容(286 F/g);对锌离子、锂离子掺杂的复合材料进行了300次充放电测试后,其比电容保持率分别为87%、88%,均高于未经金属离子掺杂的复合材料的比电容保持率(83%),表明锌离子与锂离子掺杂可提升复合材料的循环稳定性。  相似文献   

3.
采用盐酸(HCl)为掺杂酸、以聚乙烯基吡咯烷酮(PVPK90)为空间稳定剂,在过硫酸铵(APS)氧化体系中通过原位聚合制备了聚苯胺/石墨烯导电复合材料。该方法制备的聚苯胺/石墨烯复合材料导电性能好,聚苯胺尺寸大小均一、形貌规整。实验结果表明,当石墨烯的添加量为7%(质量分数)时,聚苯胺/石墨烯复合材料的电导率较纯聚苯胺的提高了2个数量级。另外,对原位聚合制备聚苯胺/石墨烯复合材料的制备工艺进行了优化。对制备工艺进行优化后,在石墨烯添加量为1%(质量分数)时,聚苯胺/石墨烯复合材料的电导率较纯聚苯胺提高了一个数量级,在提高复合材料导电性的同时简化了加工工艺,大大提高了生产率,具有可靠的实用价值。  相似文献   

4.
由于聚苯胺的制备方法简单、环境稳定性高、原料易得和独特的酸碱掺杂-脱掺杂机制,使其成为目前研究最为广泛的导电高分子材料之一.介绍了利用界面聚合法制备各种不同形貌的纳米聚苯胺及其复合材料的研究进展,重点介绍了界面聚合法制备聚苯胺纳米纤维的研究进展和作用机理.  相似文献   

5.
通过化学氧化聚合法,将固相法合成的CdS纳米粒子在十二坑基苯磺酸(DBSA)存在的条件下,用氧化剂(同时也是催化剂)过硫酸铵(APS)氧化苯胺(An),制得了CdS/聚苯胺导电复合材料。探讨了CdS的掺入量对导电复合材料的影响。CdS/聚苯胺导电复合材料用X射线粉末衍射(XRD)、透射电镜(TEM)、红外光谱(FT-IR)和四探针电导率测试仪进行了表征。结果表明,当苯胺单体为2mL,CdS的掺入量为0.1g时,制得的CdS/聚苯胺导电复合材料电导率较高。  相似文献   

6.
以具有发达三维网络结构和丰富化学基团的纳米纤维素为基体,对其进行羧酸化改性,进一步在羧酸化纳米纤维上原位合成聚苯胺,制备羧酸化纳米纤维素/聚苯胺复合凝胶材料。研究了不同条件下羧酸化改性对复合材料微观形貌和电学性能的影响。扫描电镜照片表明聚苯胺均匀包覆在纳米纤维素纤维上形成导电网络结构,电化学测试结果表明羧酸化改性可以提高复合材料的离子电导率,达到5. 12×10~(-4)S/cm,同时具有较好的电化学稳定性,在电池、电容器等电子器件上有潜在应用。  相似文献   

7.
由于易于合成,导电率高和温度与环境稳定性等优点,聚苯胺作为导电高分子已成为研究热点。本文在介绍掺杂聚苯胺的导电机理后,重点分析比较了不同酸掺杂聚苯胺的导电性能。其中无机酸掺杂后的聚苯胺导电率提高显著,有机酸掺杂中常用来改善其溶解性。  相似文献   

8.
聚苯胺-聚合物纳米复合材料的制备及应用   总被引:3,自引:1,他引:3  
聚苯胺-聚合物纳米复合材料的制备方法可分为原位聚合法和机械共混法两大类.聚苯胺-聚合物纳米复合材料在透明导电薄膜、防静电涂料、导电纤维、电磁屏蔽、有机电致发光器件等领域有着广阔的应用前景.  相似文献   

9.
聚苯胺(PANI)是研究最为广泛的导电高分子材料之一。本文综述了聚苯胺的结构、特性及几种合成聚苯胺的方法,介绍了聚苯胺的掺杂方法及聚苯胺的应用前景。  相似文献   

10.
通过原位聚合非二次掺杂制备了高导电性聚苯胺/氧化石墨烯复合材料.采用盐酸为掺杂酸,研究了聚苯胺/氧化石墨烯的微观形貌;探讨了盐酸浓度及氧化石墨烯(GO)用量对反应过程和复合材料导电性的影响.结果表明:聚苯胺(PANI)以球状物的形式均匀地包覆在GO表面;盐酸浓度超过0.5 mol·L-1,反应诱导期明显缩短,复合材料的导电性显著提高.在聚合体系中加入GO可延长聚合反应诱导期,但随着GO用量的增加反应诱导期缩短.当盐酸浓度为0.5 mol·L-1,GO与苯胺单体质量比超过2%时,制备的PANI/GO复合材料中GO形成导电通路,电导率较纯PANI提高一个数量级,达到1.4S·cm-1.  相似文献   

11.
用化学氧化法和溴蒸气掺杂合成掺溴聚苯胺,通过机械共混制备MWNTs/PANI和MWNTs/掺溴PANI复合材料.复合材料表现出良好的导电性能,电导率达5~10 S·m~(-1),接近纯MWNTs的电导率.采用红外光谱、热重分析、紫外可见光谱、X射线粉末衍射和X射线光电子能谱研究MWNTs/掺溴PANI复合材料的导电性能和导电机理.研究表明,MWNTs和被掺杂的掺溴PANI通过π-π和p-π共轭作用形成电子转移复合物,组成了一个个独立导电单元,在复合材料的导电体系中起主要作用,随着导电单元数量增加至相互接触,形成导电网络,复合材料的电导率达到最大值.  相似文献   

12.
原位聚合法制备聚苯胺/ 聚乙烯醇导电材料的研究   总被引:4,自引:0,他引:4  
采用原位聚合方法合成了聚苯胺/聚乙烯醇导电复合材料,研究了反应体系中聚苯胺的质量分数和反应时间对复合材料电导率的影响,并且通过红外光谱和热重分析对其结构和稳定性进行了表征和分析.  相似文献   

13.
建立了复合导电纤维导电性的物理模型.给出了纤维电导率与纤维中导电组分含量间比关系.  相似文献   

14.
15.
碳纤维机敏水泥基材料性能研究   总被引:19,自引:1,他引:19  
研究了掺有碳纤维的水泥基复合材料的导电机理和在轴向压力下的压阻特性。结果表明:碳纤维水泥基复合材料的导电性有较显著的压力依赖性。在低应力水平下电阻随压力增加而降低,在较高应力水平下则随应力增在而升高,呈现所谓的“电阻负压力系数(NPCR)和正压力系数(PPCR)”效应。在循环荷载作用下,电阻的变化呈现Kaiser记忆效应。电阻的压力依赖性,被认为与碳纤维在水泥基体中形成的导电网络在荷载作用下的破坏与重组有关。  相似文献   

16.
用 3种不同粒度的石墨超细粉与金属粉 (以不同质量比 )混合的复合粉作为玻璃钢表面导电组分进行了玻璃钢表面电阻和力学性能的试验研究。试验结果表明 ,适量掺入石墨超细粉和金属粉而组成的复合粉 ,可有效改善玻璃钢的表面导电性能而对其力学性能影响不大。石墨超细粉细度越高则对玻璃钢表面导电性能的改善效果越明显  相似文献   

17.
导电聚苯胺/聚苯乙烯核/壳结构复合微球的制备   总被引:2,自引:0,他引:2  
通过化学改性对聚苯乙烯微球进行磺化处理,引入亲水性的磺酸基,采用原住聚合的方式,在磺酸根的掺杂下制备了具有核/壳结构的导电聚苯胺/聚苯乙烯复合微球。复合微球中聚苯胺含量为19.3%时导电率约为0.10S/cm,与用聚苯乙烯磺酸本体掺杂的导电率相当。  相似文献   

18.
用IR,UV,XRD分析了聚苯胺/磁流体纳米复合粒子性能与氧化剂过硫酸铵(APS)的定量关系。对制备的系列不同氧化剂含量的导电聚苯胺(PANI)/磁流体(Ni0.5Zn0.5Fe2O4氧体)纳米复合粒子样品的电性能和磁性能进行测试。结果表明,聚苯胺/磁流体纳米复合粒子的导电性随着APS用量的增加而降低。聚苯胺/磁流体纳米复合粒子UV谱线随着APS用量增加的峰逐渐红移,饱和磁化强度和矫顽力变化较小。  相似文献   

19.
主要研究以铜锡合金以及经偶联剂处理的铜锡合金作为导电填料通过球磨法添加到高密度聚乙烯基体中制备的复合材料的导电性能。DSC分析表明随着铜锡合金含量的增加,复合样品的熔点及结晶度均呈现上升的趋势,而经偶联剂处理后,复合样品的熔点及结晶度较未经偶联剂处理的样品有降低的趋势,且随着偶联剂含量的增加,样品的熔点及结晶度降低;导电性能测试结果表明随着铜锡合金含量的增加,复合样品具有更好的导电效果,且经过偶联剂处理的铜锡合金较未经偶联剂处理的铜锡合金具有更好的导电性能。  相似文献   

20.
水泥基导电复合材料渗滤阈值的判定方法   总被引:8,自引:0,他引:8  
从理论上分析了水泥基导电复合材料的渗滤过程及其等效电路,得出了导电材料含量达到了阈值时的特征,提出了一种新的判定水泥基导电材料下阈值的方法,并用碳纤维增强水泥和石墨导电水泥进行了验证,发现这种新方法可以方便准确地确定水泥基导电复合材料的下阈值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号