首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamics of supercooled water in confined geometry   总被引:1,自引:0,他引:1  
Bergman R  Swenson J 《Nature》2000,403(6767):283-286
As with most liquids, it is possible to supercool water; this generally involves cooling the liquid below its melting temperature (avoiding crystallization) until it eventually forms a glass. The viscosity and related relaxation times (tau) of glass-forming liquids typically show non-Arrhenius temperature (T) dependencies. Liquids with highly non-Arrhenius behaviour in the supercooled region are termed 'fragile'. In contrast, liquids whose behaviour is close to the Arrhenius law (In tau infinity 1/T) are termed 'strong'. A unique 'fragile-strong' transition around 228 K has been proposed for supercooled water; however, experimental studies of bulk supercooled water in this temperature range are generally hampered because crystallization occurs. Here we use broad-band dielectric spectroscopy to study the relaxation dynamics of supercooled water in a wide temperature range, including the usually inaccessible temperature region. This is possible because the supercooled water is held within a layered vermiculite clay-the geometrical confinement and presence of intercalated sodium ions prevent most of the water from crystallizing. We find a relaxational process with an Arrhenius temperature dependence, consistent with the proposed strong nature of deeply supercooled bulk water. Because water that is less supercooled has been established as highly fragile, our results support the existence of a fragile-strong transition.  相似文献   

2.
Kohl I  Bachmann L  Mayer E  Hallbrucker A  Loerting T 《Nature》2005,435(7041):E1; discussion E1-E1; discussion E2
It has been unclear whether amorphous glassy water heated to around 140-150 K remains glassy until it crystallizes or whether instead it turns into a supercooled and very viscous liquid. Yue and Angell compare the behaviour of glassy water under these conditions to that of hyperquenched inorganic glasses, and claim that water stays glassy as it heats up to its crystallization point; they also find a 'hidden' glass-to-liquid transition at about 169 K. Here we use differential scanning calorimetry (DSC) heating to show that hyperquenched water deposited at 140 K behaves as an ultraviscous liquid, the limiting structure of which depends on the cooling rate--as predicted by theoretical analysis of the liquid-to-glass transition. Our findings are consistent with a glass-to-liquid transition-onset temperature (T(g)) in the region of 136 K (refs 3,4), and they indicate that measurements of the liquid's properties may clarify the anomalous properties of supercooled water.  相似文献   

3.
Koop T  Luo B  Tsias A  Peter T 《Nature》2000,406(6796):611-614
The unique properties of water in the supercooled (metastable) state are not fully understood. In particular, the effects of solutes and mechanical pressure on the kinetics of the liquid-to-solid phase transition of supercooled water and aqueous solutions to ice have remained unresolved. Here we show from experimental data that the homogeneous nucleation of ice from supercooled aqueous solutions is independent of the nature of the solute, but depends only on the water activity of the solution--that is, the ratio between the water vapour pressures of the solution and of pure water under the same conditions. In addition, we show that the presence of solutes and the application of pressure have a very similar effect on ice nucleation. We present a thermodynamic theory for homogeneous ice nucleation, which expresses the nucleation rate coefficient as a function of water activity and pressure. Recent observations from clouds containing ice are in good agreement with our theory and our results should help to overcome one of the main weaknesses of numerical models of the atmosphere, the formulation of cloud processes.  相似文献   

4.
Torre R  Bartolini P  Righini R 《Nature》2004,428(6980):296-299
Water has many kinetic and thermodynamic properties that exhibit an anomalous dependence on temperature, in particular in the supercooled phase. These anomalies have long been interpreted in terms of underlying structural causes, and their experimental characterization points to the existence of a singularity at a temperature of about 225 K. Further insights into the nature and origin of this singularity might be gained by completely characterizing the structural relaxation in supercooled water. But until now, such a characterization has only been realized in simulations that agree with the predictions of simple mode-coupling theory; unambiguous experimental support for this surprising conclusion is, however, not yet available. Here we report time-resolved optical Kerr effect measurements that unambiguously demonstrate that the structural relaxation of liquid and weakly supercooled water follows the behaviour predicted by simple mode-coupling theory. Our findings thus support the interpretation of the singularity as a purely dynamical transition. That is, the anomalous behaviour of weakly supercooled water can be explained using a fully dynamic model and without needing to invoke a thermodynamic origin. In this regard, water behaves like many other, normal molecular liquids that are fragile glass-formers.  相似文献   

5.
K Harrison  J Hallett  T S Burcham  R E Feeney  W L Kerr  Y Yeh 《Nature》1987,328(6127):241-243
Inhibition of ice growth in supercooled solution by certain proteins is vital to the survival of many living organisms. Some fish, native to both subzero northern and southern waters, have special proteins or glycoproteins in their blood serum that inhibit ice formation. Whereas these proteins have only a very small effect on the melting temperature of ice, the temperature of these fish can fall to nearly 1 K below the melting point before ice crystals grow. This phenomenon is called freezing hysteresis, in contrast to the normal colligative effect of solutes that depresses the equilibrium temperature, around which small changes lead to crystal growth or melting depending on sign. Some insects also exhibit a serum freezing hysteresis. We report the effects of different degrees of supercooling on the habit and rates of growth of ice crystals from solutions of these antifreeze glycoproteins (AFGPs). We find that the crystallization rate is up to five times greater than that in pure water.  相似文献   

6.
W A Crichton  M Mezouar  T Grande  S St?len  A Grzechnik 《Nature》2001,414(6864):622-625
Studies of liquids with tetrahedral coordination, particularly during compression or quenching, have indicated the existence of distinct phases in the liquid state, distinguishable by density and local structure. In systems that exhibit critical phenomena in the supercooled state, anomalous behaviour of the compressibility is also anticipated above the critical point, as revealed by simulations of water. Liquid GeSe(2) is a potentially attractive system for studying both types of phenomena, given its two-dimensional tetrahedral structure and anomalous physical properties (including a density minimum near its melting point). Here we report in situ X-ray diffraction measurements of solid and liquid GeSe(2) at high temperature and high pressure, revealing that the structure of the liquid is sensitive to pressure and that anomalous compressibility is expected. During compression of liquid GeSe(2), the connectivity of the liquid changes from two- to three-dimensional, leading to a breakdown of the intermediate-range order. The gradual change in structure above the melting line may develop to a first-order liquid-liquid transition in the supercooled regime.  相似文献   

7.
Murray BJ  Knopf DA  Bertram AK 《Nature》2005,434(7030):202-205
An important mechanism for ice cloud formation in the Earth's atmosphere is homogeneous nucleation of ice in aqueous droplets, and this process is generally assumed to produce hexagonal ice. However, there are some reports that the metastable crystalline phase of ice, cubic ice, may form in the Earth's atmosphere. Here we present laboratory experiments demonstrating that cubic ice forms when micrometre-sized droplets of pure water and aqueous solutions freeze homogeneously at cooling rates approaching those found in the atmosphere. We find that the formation of cubic ice is dominant when droplets freeze at temperatures below 190 K, which is in the temperature range relevant for polar stratospheric clouds and clouds in the tropical tropopause region. These results, together with heat transfer calculations, suggest that cubic ice will form in the Earth's atmosphere. If there were a significant fraction of cubic ice in some cold clouds this could increase their water vapour pressure, and modify their microphysics and ice particle size distributions. Under specific conditions this may lead to enhanced dehydration of the tropopause region.  相似文献   

8.
从经典形核理论入手分析了过冷却器结冰的影响因素.在此基础上,搭建了过冷法制备冰浆实验台,通过大量实验对过冷水在过冷却器内结冰过程展开研究,结合边界层理论初步探究了流动与换热过程对过冷却器结冰的影响机制.实验结果表明:过冷水形核过程受换热壁面温度与流体扰动的共同影响;当雷诺数Re较小或二次冷媒温度较低时的形核主要受换热壁温影响;当Re数较大时的形核主要受到流体扰动的影响.  相似文献   

9.
测量了不同温度和不同过饱和比下硝酸酸沉四钼酸铵过饱和溶液的成核诱导时间,讨论了温度及过饱和比对成核诱导时间和成核速率的影响.结果表明,四钼酸铵过饱和溶液的成核速率随着温度的升高和过饱和比的增大而增大.在实验温度范围内均匀成核和非均匀成核之间的临界过饱和比为3.0~6.0.根据均匀成核理论,计算了不同温度下的固液界面张力、临界半径和临界成核自由能.讨论了四钼酸铵结晶的条件,认为在成核阶段应采用较高的温度和过饱和比,而在晶核长大阶段应控制较小的过饱和比,以利于获得均匀、完整的晶体.  相似文献   

10.
Koga K  Tanaka H  Zeng XC 《Nature》2000,408(6812):564-567
Supercooled water and amorphous ice have a rich metastable phase behaviour. In addition to transitions between high- and low-density amorphous solids, and between high- and low-density liquids, a fragile-to-strong liquid transition has recently been proposed, and supported by evidence from the behaviour of deeply supercooled bilayer water confined in hydrophilic slit pores. Here we report evidence from molecular dynamics simulations for another type of first-order phase transition--a liquid-to-bilayer amorphous transition--above the freezing temperature of bulk water at atmospheric pressure. This transition occurs only when water is confined in a hydrophobic slit pore with a width of less than one nanometre. On cooling, the confined water, which has an imperfect random hydrogen-bonded network, transforms into a bilayer amorphous phase with a perfect network (owing to the formation of various hydrogen-bonded polygons) but no long-range order. The transition shares some characteristics with those observed in tetrahedrally coordinated substances such as liquid silicon, liquid carbon and liquid phosphorus.  相似文献   

11.
应用差示扫描量热法(DSC)和Avrami模型分析聚苯硫醚(PPS)/碳纳米管(CNT)复合材料的等温结晶行为,分别考察了PPS和复合材料的结晶动力学参数以及结晶活化能,揭示了PPS的等温结晶特性和少量CNT对PPS结晶行为的作用。结果表明:随着结晶温度的升高,复合材料的结晶速率逐渐下降,说明复合材料的结晶是以依热成核控制为主;少量CNT的加入降低了PPS的结晶活化能,明显提高了PPS的结晶速率,同时使成核方式发生转变;纯PPS的Avrami指数n约为4,结晶方式为均相成核,而复合材料的Avrami指数n约为3,转变为异相成核;成核方式的转变大大的提高了PPS的结晶速率。  相似文献   

12.
Yue Y  Angell CA 《Nature》2004,427(6976):717-720
The formation of glasses is normal for substances that remain liquid over a wide temperature range (the 'good glassformers') and can be induced for most liquids if cooling is fast enough to bypass crystallization. During reheating but still below the melting point, good glassformers exhibit glass transitions as they abruptly transform into supercooled liquids, whereas other substances transform directly from the glassy to the crystalline state. Whether water exhibits a glass transition before crystallization has been much debated over five decades. For the last 20 years, the existence of a glass transition at 136 K (ref. 3) has been widely accepted, but the transition exhibits qualities difficult to reconcile with our current knowledge of glass transitions. Here we report detailed calorimetric characterizations of hyperquenched inorganic glasses that, when heated, do not crystallize before reaching their glass transition temperatures. We compare our results to the behaviour of glassy water and find that small endothermic effects, such as the one attributed to the glass transition of water, are only a 'shadow' of the real glass transition occurring at higher temperatures, thus substantiating the conclusion that the glass transition of water cannot be probed directly.  相似文献   

13.
The superheating of a solid to a temperature beyond its melting point, without the solid actually melting, is a well-known phenomenon. It occurs with many substances, particularly those that can readily be produced as high-quality crystals. In principle, ice should also be amenable to superheating. But the complex three-dimensional network of hydrogen bonds that holds water molecules together and gives rise to unusual solid and liquid properties strongly affects the melting behaviour of ice; in particular, ice usually contains many defects owing to the directionality of its hydrogen bonds. However, simulations are readily able to 'create' defect-free ice that can be superheated. Here we show that by exciting the OH stretching mode of water, it is possible to superheat ice. When using an ice sample at an initial temperature of 270 K, we observe an average temperature rise of 20 +/- 2 K that persists over the monitored time interval of 250 ps without melting.  相似文献   

14.
Rosenfeld D  Woodley WL 《Nature》2000,405(6785):440-442
In cirrus and orographic wave clouds, highly supercooled water has been observed in small quantities (less than 0.15 g m(-3)). This high degree of supercooling was attributed to the small droplet size and the lack of ice nuclei at the heights of these clouds. For deep convective clouds, which have much larger droplets near their tops and which take in aerosols from near the ground, no such measurements have hitherto been reported. However, satellite data suggest that highly supercooled water (down to -38 degrees C) frequently occurs in vigorous continental convective storms. Here we report in situ measurements in deep convective clouds from an aircraft, showing that most of the condensed water remains liquid down to -37.5 degrees C. The droplets reach a median volume diameter of 17 microm and amount to 1.8 gm(-3), one order of magnitude more than previously reported. At slightly colder temperatures only ice was found, suggesting homogeneous freezing. Because of the poor knowledge of mixed-phase cloud processes, the simulation of clouds using numerical models is difficult at present. Our observations will help to understand these cloud processes, such as rainfall, hail, and cloud electrification, together with their implications for the climate system.  相似文献   

15.
分析了教材中关于液态金属凝固热力学条件和形核热力学中的公式推导过程,发现教材中存在参数的量纲前后不一致而得出错误结果的现象;通过统一量纲,获得了均质形核的正确临界晶核半径计算式,并通过实例对其正确性进行了检验.结果表明,所获得的临界晶核半径计算式正确.  相似文献   

16.
应用统计热力学巨正则系统的密度涨落理论,提出了确定均质沸腾中液体极限过热度和均质凝结中蒸汽极限过冷度的方法。以水及水蒸汽作了不同压力下的相关计算,得出了蒸汽凝结机制较沸腾机制复杂得多的结论,并推测出动力学影响是蒸汽凝结不可忽略的重要因素。  相似文献   

17.
采用分子动力学方法和Quantum Sutton-Chen(Q-SC)多体势,对含有5万个液态金属铜(Cu)原子系统在凝固过程中的晶体成核与生长规律及纳米团簇微观结构转变特性进行了模拟跟踪研究.运用Honeycutt-Andersen(HA)键型指数法和新的原子团类型指数法(CTIM-2)分析了金属Cu原子的成键类型和原子团簇微观结构演变特性.结果发现:在以1.0×1013K/s速度冷却时,体系最终形成晶态与非晶态结构共存的混合结构,非晶转化温度约为673K,结晶起始温度为373K.在以4.0×1012K/s速度冷却时,结晶起始温度为673K,系统形成以1421和1422二种键型或由其构成的面心立方(fcc)(12000120)和六角密集(hcp)(1200066)基本原子团为主体的晶态结构,尤其是由1421键型构成的面心立方基本原子团在晶核生长和纳米团簇结构形成过程中占主导地位.形核和生长过程对凝固微观结构演变特性有重要的影响.  相似文献   

18.
利用气动悬浮和熔融玻璃净化法对液态纯铁的过冷能力进行研究, 分别获得了340 和281K 的最大过冷度, 表明在气动悬浮无容器凝固条件下液态纯铁的形核更接近于均质形核.根据经典形核理论和Spaepen 界面能公式, 建立了金属熔体本征过冷度(即均质形核对应的过冷度)与熔化熵之间的耦合关系方程. 并根据该方程预测了一系列金属熔体的本征过冷度, 对比结果表明预测值与实验值具有较好的一致性.  相似文献   

19.
Matsumoto M  Saito S  Ohmine I 《Nature》2002,416(6879):409-413
Upon cooling, water freezes to ice. This familiar phase transition occurs widely in nature, yet unlike the freezing of simple liquids, it has never been successfully simulated on a computer. The difficulty lies with the fact that hydrogen bonding between individual water molecules yields a disordered three-dimensional hydrogen-bond network whose rugged and complex global potential energy surface permits a large number of possible network configurations. As a result, it is very challenging to reproduce the freezing of 'real' water into a solid with a unique crystalline structure. For systems with a limited number of possible disordered hydrogen-bond network structures, such as confined water, it is relatively easy to locate a pathway from a liquid state to a crystalline structure. For pure and spatially unconfined water, however, molecular dynamics simulations of freezing are severely hampered by the large number of possible network configurations that exist. Here we present a molecular dynamics trajectory that captures the molecular processes involved in the freezing of pure water. We find that ice nucleation occurs once a sufficient number of relatively long-lived hydrogen bonds develop spontaneously at the same location to form a fairly compact initial nucleus. The initial nucleus then slowly changes shape and size until it reaches a stage that allows rapid expansion, resulting in crystallization of the entire system.  相似文献   

20.
过冷水雾相变传播及温度场的实验研究   总被引:1,自引:0,他引:1  
实验表明在过冷水雾相变传播过程中伴随有脉冲型单峰形式的温度上升,相变传播速率约为1.2cm/s,温度的波形和峰值以及相变的传播速度与过冷水雾的初始温度基本无关,据此对过冷水雾冰晶机制作了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号