首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Instability of Hes7 protein is crucial for the somite segmentation clock   总被引:7,自引:0,他引:7  
During somitogenesis, a pair of somites buds off from the presomitic mesoderm every 2 hours in mouse embryos, suggesting that somite segmentation is controlled by a biological clock with a 2-hour cycle. Expression of the basic helix-loop-helix factor Hes7, an effector of Notch signaling, follows a 2-hour oscillatory cycle controlled by negative feedback; this is proposed to be the molecular basis for the somite segmentation clock. If the proposal is correct, this clock should depend crucially on the short lifetime of Hes7. To address the biological importance of Hes7 instability, we generated mice expressing mutant Hes7 with a longer half-life (approximately 30 min compared with approximately 22 min for wild-type Hes7) but normal repressor activity. In these mice, somite segmentation and oscillatory expression became severely disorganized after a few normal cycles of segmentation. We simulated this effect mathematically using a direct autorepression model. Thus, instability of Hes7 is essential for sustained oscillation and for its function as a segmentation clock.  相似文献   

2.
The Notch-signalling pathway is important in establishing metameric pattern during somitogenesis. In mice, the lack of either of two molecules involved in the Notch-signalling pathway, Mesp2 or presenilin-1 (Ps1), results in contrasting phenotypes: caudalized versus rostralized vertebra. Here we adopt a genetic approach to analyse the molecular mechanism underlying the establishment of rostro-caudal polarity in somites. By focusing on the fact that expression of a Notch ligand, Dll1, is important for prefiguring somite identity, we found that Mesp2 initiates establishment of rostro-caudal polarity by controlling two Notch-signalling pathways. Initially, Mesp2 activates a Ps1-independent Notch-signalling cascade to suppress Dll1 expression and specify the rostral half of the somite. Ps1-mediated Notch-signalling is required to induce Dll1 expression in the caudal half of the somite. Therefore, Mesp2- and Ps1-dependent activation of Notch-signalling pathways might differentially regulate Dll1 expression, resulting in the establishment of the rostro-caudal polarity of somites.  相似文献   

3.
The Drosophila melanogaster lymph gland is a hematopoietic organ and, together with prospective vascular cells (cardioblasts) and excretory cells (pericardial nephrocytes), arises from the cardiogenic mesoderm. Clonal analysis provided evidence for a hemangioblast that can give rise to two daughter cells: one that differentiates into heart or aorta and another that differentiates into blood. In addition, the GATA factor gene pannier (pnr) and the homeobox gene tinman (tin), which are controlled by the convergence of Decapentaplegic (Dpp), fibroblast growth factor (FGF), Wingless (Wg) and Notch signaling, are required for the development of all cardiogenic mesoderm, including the lymph gland. Here we show that an essential genetic switch that differentiates between the blood or nephrocyte and vascular lineages involves the Notch pathway. Further specification occurs through specific expression of the GATA factor Serpent (Srp) in the lymph-gland primordium. Our findings suggest that there is a close parallel between the molecular mechanisms functioning in the D. melanogaster cardiogenic mesoderm and those functioning in the mammalian aorta-gonadal-mesonephros mesoderm.  相似文献   

4.
Fate-mapping experiments in the mouse have revealed that the primitive streak can be divided into three functional regions: the proximal region gives rise to germ cells and the extra-embryonic mesoderm of the yolk sac; the distal region generates cardiac mesoderm and node-derived axial mesendoderm; and the middle streak region produces the paraxial, intermediate and lateral plate mesoderm of the trunk. To gain insight into the mechanisms that mediate the assembly of the primitive streak into these functional regions, we have cloned and functionally identified the gene disrupted in the amnionless (amn) mouse, which has a recessive, embryonic lethal mutation that interferes specifically with the formation and/or specification of the middle primitive streak region during gastrulation. Here we report that the gene Amn encodes a novel type I transmembrane protein that is expressed exclusively in the extra-embryonic visceral endoderm layer during gastrulation. The extracellular region of the Amn protein contains a cysteine-rich domain with similarity to bone morphogenetic protein (BMP)-binding cysteine-rich domains in chordin, its Drosophila melanogaster homolog (Short gastrulation) and procollagen IIA (ref. 3). Our findings indicate that Amn may direct the production of trunk mesoderm derived from the middle streak by acting in the underlying visceral endoderm to modulate a BMP signaling pathway.  相似文献   

5.
6.
7.
Interaction of reelin signaling and Lis1 in brain development   总被引:1,自引:0,他引:1  
Loss-of-function mutations in RELN (encoding reelin) or PAFAH1B1 (encoding LIS1) cause lissencephaly, a human neuronal migration disorder. In the mouse, homozygous mutations in Reln result in the reeler phenotype, characterized by ataxia and disrupted cortical layers. Pafah1b1(+/-) mice have hippocampal layering defects, whereas homozygous mutants are embryonic lethal. Reln encodes an extracellular protein that regulates layer formation by interacting with VLDLR and ApoER2 (Lrp8) receptors, thereby phosphorylating the Dab1 signaling molecule. Lis1 associates with microtubules and modulates neuronal migration. We investigated interactions between the reelin signaling pathway and Lis1 in brain development. Compound mutant mice with disruptions in the Reln pathway and heterozygous Pafah1b1 mutations had a higher incidence of hydrocephalus and enhanced cortical and hippocampal layering defects. Dab1 and Lis1 bound in a reelin-induced phosphorylation-dependent manner. These data indicate genetic and biochemical interaction between the reelin signaling pathway and Lis1.  相似文献   

8.
9.
Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate   总被引:3,自引:0,他引:3  
Numerous microRNAs (miRNAs) have been discovered in the genomes of higher eukaryotes, and functional studies indicate that they are important during development. However, little is known concerning the function of individual miRNAs. We approached this problem in zebrafish by combining identification of miRNA expression, functional analyses and experimental validation of potential targets. We show that miR-214 is expressed during early segmentation stages in somites and that varying its expression alters the expression of genes regulated by Hedgehog signaling. Inhibition of miR-214 results in a reduction or loss of slow-muscle cell types. We show that su(fu) mRNA, encoding a negative regulator of Hedgehog signaling, is targeted by miR-214. Through regulation of su(fu), miR-214 enables precise specification of muscle cell types by sharpening cellular responses to Hedgehog.  相似文献   

10.
11.
Notch1 functions as a tumor suppressor in mouse skin   总被引:24,自引:0,他引:24  
Notch proteins are important in binary cell-fate decisions and inhibiting differentiation in many developmental systems, and aberrant Notch signaling is associated with tumorigenesis. The role of Notch signaling in mammalian skin is less well characterized and is mainly based on in vitro studies, which suggest that Notch signaling induces differentiation in mammalian skin. Conventional gene targeting is not applicable to establishing the role of Notch receptors or ligands in the skin because Notch1-/- embryos die during gestation. Therefore, we used a tissue-specific inducible gene-targeting approach to study the physiological role of the Notch1 receptor in the mouse epidermis and the corneal epithelium of adult mice. Unexpectedly, ablation of Notch1 results in epidermal and corneal hyperplasia followed by the development of skin tumors and facilitated chemical-induced skin carcinogenesis. Notch1 deficiency in skin and in primary keratinocytes results in increased and sustained expression of Gli2, causing the development of basal-cell carcinoma-like tumors. Furthermore, Notch1 inactivation in the epidermis results in derepressed beta-catenin signaling in cells that should normally undergo differentiation. Enhanced beta-catenin signaling can be reversed by re-introduction of a dominant active form of the Notch1 receptor. This leads to a reduction in the signaling-competent pool of beta-catenin, indicating that Notch1 can inhibit beta-catenin-mediated signaling. Our results indicate that Notch1 functions as a tumor-suppressor gene in mammalian skin.  相似文献   

12.
Wnt signaling defines the colonic epithelial progenitor cell phenotype, and mutations in the gene adenomatous polyposis coli (APC) that activate the Wnt pathway cause the familial adenomatous polyposis coli (FAP) syndrome and most sporadic colon cancers. The mechanisms that regulate the transition of epithelial precursor cells into their differentiated derivatives are poorly characterized. We report that Indian hedgehog (Ihh) is expressed by mature colonocytes and regulates their differentiation in vitro and in vivo. Hedgehog (Hh) signaling restricts the expression of Wnt targets to the base of the colonic crypt in vivo, and transfection of Ihh into colon cancer cells leads to a downregulation of both components of the nuclear TCF4-beta-catenin complex and abrogates endogenous Wnt signaling in vitro. In turn, expression of Ihh is downregulated in polyps of individuals with FAP and expression of doxycycline-inducible dominant negative TCF4 (dnTCF4) restores Ihh expression in APC mutant DLD-1 colon cancer cells. These data identify a new Wnt-Hh axis in colonic epithelial renewal.  相似文献   

13.
Loeys-Dietz syndrome (LDS) associates with a tissue signature for high transforming growth factor (TGF)-β signaling but is often caused by heterozygous mutations in genes encoding positive effectors of TGF-β signaling, including either subunit of the TGF-β receptor or SMAD3, thereby engendering controversy regarding the mechanism of disease. Here, we report heterozygous mutations or deletions in the gene encoding the TGF-β2 ligand for a phenotype within the LDS spectrum and show upregulation of TGF-β signaling in aortic tissue from affected individuals. Furthermore, haploinsufficient Tgfb2(+/-) mice have aortic root aneurysm and biochemical evidence of increased canonical and noncanonical TGF-β signaling. Mice that harbor both a mutant Marfan syndrome (MFS) allele (Fbn1(C1039G/+)) and Tgfb2 haploinsufficiency show increased TGF-β signaling and phenotypic worsening in association with normalization of TGF-β2 expression and high expression of TGF-β1. Taken together, these data support the hypothesis that compensatory autocrine and/or paracrine events contribute to the pathogenesis of TGF-β-mediated vasculopathies.  相似文献   

14.
Characterization of previously described intraflagellar transport (IFT) mouse mutants has led to the proposition that normal primary cilia are required for mammalian cells to respond to the sonic hedgehog (SHH) signal. Here we describe an N-ethyl-N-nitrosourea-induced mutant mouse, alien (aln), which has abnormal primary cilia and shows overactivation of the SHH pathway. The aln locus encodes a novel protein, THM1 (tetratricopeptide repeat-containing hedgehog modulator-1), which localizes to cilia. aln-mutant cilia have bulb-like structures at their tips in which IFT proteins (such as IFT88) are sequestered, characteristic of Chlamydomonas reinhardtii and Caenorhabditis elegans retrograde IFT mutants. RNA-interference knockdown of Ttc21b (which we call Thm1 and which encodes THM1) in mouse inner medullary collecting duct cells expressing an IFT88-enhanced yellow fluorescent protein fusion recapitulated the aln-mutant cilial phenotype, and live imaging of these cells revealed impaired retrograde IFT. In contrast to previously described IFT mutants, Smoothened and full-length glioblastoma (GLI) proteins localize to aln-mutant cilia. We hypothesize that the aln retrograde IFT defect causes sequestration of IFT proteins in aln-mutant cilia and leads to the overactivated SHH signaling phenotype. Specifically, the aln mutation uncouples the roles of anterograde and retrograde transport in SHH signaling, suggesting that anterograde IFT is required for GLI activation and that retrograde IFT modulates this event.  相似文献   

15.
Kras is commonly mutated in colon cancers, but mutations in Nras are rare. We have used genetically engineered mice to determine whether and how these related oncogenes regulate homeostasis and tumorigenesis in the colon. Expression of K-Ras(G12D) in the colonic epithelium stimulated hyperproliferation in a Mek-dependent manner. N-Ras(G12D) did not alter the growth properties of the epithelium, but was able to confer resistance to apoptosis. In the context of an Apc-mutant colonic tumor, activation of K-Ras led to defects in terminal differentiation and expansion of putative stem cells within the tumor epithelium. This K-Ras tumor phenotype was associated with attenuated signaling through the MAPK pathway, and human colon cancer cells expressing mutant K-Ras were hypersensitive to inhibition of Raf, but not Mek. These studies demonstrate clear phenotypic differences between mutant Kras and Nras, and suggest that the oncogenic phenotype of mutant K-Ras might be mediated by noncanonical signaling through Ras effector pathways.  相似文献   

16.
Involvement of a novel Tnf receptor homologue in hair follicle induction.   总被引:23,自引:0,他引:23  
Although inductive interactions are known to be essential for specification of cell fate in many vertebrate tissues, the signals and receptors responsible for transmitting this information remain largely unidentified. Mice with mutations in the downless (dl) gene have defects in hair follicle induction, lack sweat glands and have malformed teeth. These structures originate as ectodermal placodes, which invaginate into the underlying mesenchyme and differentiate to form specific organs. Positional cloning of the dl gene began with identification of the transgenic family OVE1. One branch of the family, dl(OVE1B), carries an approximately 600-kb deletion at the dl locus caused by transgene integration. The mutated locus has been physically mapped in this family, and a 200-kb mouse YAC clone, YAC D9, has been identified and shown to rescue the dl phenotype in the spontaneous dl(Jackson) (dl(J), recessive) and Dl(sleek) (Dl(slk), dominant negative) mutants. Here we report the positional cloning of the dl gene, which encodes a novel member of the tumour necrosis factor (Tnf) receptor (Tnfr) family. The mutant phenotype and dl expression pattern suggests that this gene encodes a receptor that specifies hair follicle fate. Its ligand is likely to be the product of the tabby (Ta) gene, as Ta mutants have a phenotype identical to that of dl mutants and Ta encodes a Tnf-like protein.  相似文献   

17.
18.
19.
Spondylocostal dysostosis (SD, MIM 277300) is a group of vertebral malsegmentation syndromes with reduced stature resulting from axial skeletal defects. SD is characterized by multiple hemivertebrae, rib fusions and deletions with a non-progressive kyphoscoliosis. Cases may be sporadic or familial, with both autosomal dominant and autosomal recessive modes of inheritance reported. Autosomal recessive SD maps to a 7.8-cM interval on chromosome 19q13.1-q13.3 that is homologous with a mouse region containing a gene encoding the Notch ligand delta-like 3 (Dll3). Dll3 is mutated in the X-ray-induced mouse mutant pudgy (pu), causing a variety of vertebrocostal defects similar to SD phenotypes. Here we have cloned and sequenced human DLL3 to evaluate it as a candidate gene for SD and identified mutations in three autosomal recessive SD families. Two of the mutations predict truncations within conserved extracellular domains. The third is a missense mutation in a highly conserved glycine residue of the fifth epidermal growth factor (EGF) repeat, which has revealed an important functional role for this domain. These represent the first mutations in a human Delta homologue, thus highlighting the critical role of the Notch signalling pathway and its components in patterning the mammalian axial  相似文献   

20.
As the human genome project approaches completion, the challenge for mammalian geneticists is to develop approaches for the systematic determination of mammalian gene function. Mouse mutagenesis will be a key element of studies of gene function. Phenotype-driven approaches using the chemical mutagen ethylnitrosourea (ENU) represent a potentially efficient route for the generation of large numbers of mutant mice that can be screened for novel phenotypes. The advantage of this approach is that, in assessing gene function, no a priori assumptions are made about the genes involved in any pathway. Phenotype-driven mutagenesis is thus an effective method for the identification of novel genes and pathways. We have undertaken a genome-wide, phenotype-driven screen for dominant mutations in the mouse. We generated and screened over 26,000 mice, and recovered some 500 new mouse mutants. Our work, along with the programme reported in the accompanying paper, has led to a substantial increase in the mouse mutant resource and represents a first step towards systematic studies of gene function in mammalian genetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号