首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 803 毫秒
1.
天然沸石吸附氨氮   总被引:7,自引:1,他引:6  
采用江苏镇江天然沸石为实验原料,在不同影响因素条件下,对含有氨氮的水样进行交换吸附研究.实验结果表明:天然沸石对氨氮的吸附是快速吸附、缓慢平衡的过程;天然沸石粒径减小,有利于沸石对氨氮的交换吸附;pH对天然沸石吸附氨氮的影响较大,pH为7时有利于氨氮的交换吸附;随着沸石用量的增加,单位质量天然沸石的氨氮交换量减小.最佳工艺条件为:沸石粒径>60~80目,pH7左右,沸石投加量50 g/L,反应30 min.  相似文献   

2.
原位治理与修复技术有成本低、效果好以及不破坏原有水体底部生态平衡等优点.针对黑臭水体处理能源成本消耗大,开发低成本的沸石原位修复工艺优化具有现实意义.基于Matlab采用人工神经网络以沸石为研究对象,以实验所得128组实验数据作为样本集,建立在以温度、投加量、pH、氨氮质量浓度、磷酸盐质量浓度为神经网络底层,以处理后的氨氮质量浓度、磷酸盐质量浓度作为神经网络底层的吸附模型,预测在不同的pH、温度、投加量的情况下,沸石对氨氮和磷酸盐的去除效果和模型输出的预测结果与实验结果规律一致.预测结果显示,沸石投加量从1 g/L增加至10 g/L的情况下,沸石投加量对氨氮没有显著影响,对磷酸盐去除效果有帮助;温度从0℃增加至30℃的情况下,沸石对氨氮和磷酸盐吸附效率越高;沸石在pH=8时,对氨氮吸附效率达到最高,沸石对磷酸盐在pH=3吸附效率最高,随后去除效果降低再升高,pH=10时达到峰值,随后吸附效率降低.验证了沸石能有效地净化水体.  相似文献   

3.
以人造沸石为原料采用化学共沉淀方法制得磁性沸石,并对其吸附溶液中氨氮的性能进行了评价,XRD和FTIR分析表明:Fe以Fe_3O_4的形式存在于磁性沸石中;磁性沸石吸附溶液中的氨氮是一个自发的放热反应,吸附速率较快,10 min即达到吸附平衡;溶液pH 3~11时对吸附未产生明显影响,但pH低于3或高于11不利于吸附;25℃、pH为6条件下,磁性沸石对氨氮的最大吸附量为42.41 mg/g.  相似文献   

4.
有机改性沸石覆盖抑制底泥氮磷释放的效果   总被引:2,自引:0,他引:2  
制备了十六烷基三甲基铵(HDTMA)有机改性沸石,研究了该改性沸石覆盖底泥对底泥中氮磷释放的影响及机理,结果表明:①当HDTMA负载量为沸石外部阳离子交换容量(ECEC)的207%时,有机改性沸石吸附磷酸盐的效果最佳;最佳负载量条件下的有机改性沸石,对磷酸盐的吸附能较好地符合Langmuir等温吸附方程,饱和吸附量为0.644 mg.g-1,常数K为0.295 L.mg-1;pH值对有机改性沸石吸附磷酸盐的性能有显著影响,随着pH值的增加对磷酸盐的吸附能力逐渐增强;共存阴离子(NO3-,HCO3-和SO42-)的存在会抑制有机改性沸石对磷酸盐的吸附.②最佳HDTMA负载量条件下有机改性沸石对氨氮的吸附作用符合Langmuir等温吸附方程,饱和吸附量为13.0 mg.g-1,常数K为0.011 9 L.mg-1,且与天然沸石相比单位质量改性沸石的吸附量降低了20%左右.③有机改性沸石覆盖可以有效地抑制底泥氨氮的释放,但有效抑制底泥氨氮释放的持续时间与天然沸石相比缩短了1/5;有机改性沸石覆盖抑制底泥磷释放的效率与天然沸石相比大大加强,且投加的有机改性沸石越多,对底泥磷释放的抑制效果越好.  相似文献   

5.
通过实验考察了沸石粒径、投加量、废水pH和吸附时间对NaCl改性沸石去除废水中氨氮的影响,结合单因子实验和正交实验获得优化条件组合,并在优化组合条件下,将NaCl改性沸石去除氨氮效果在实际废水中进行验证.结果表明,粒径越小越利于NaCl改性沸石对废水中氨氮的去除,而投加量、废水pH和吸附时间亦对改性沸石去除氨氮产生影响,通过正交优化实验分析得出,最主要影响因素为沸石投加量,结合单因子实验,筛选出改性沸石去除废水中氨氮的最佳工艺组合条件为沸石粒径60目、沸石投加量70g/L、废水pH=6、吸附时间1h,废水中氨氮去除率达到90.5%.在最佳工艺组合条件下,NaCl改性沸石对生活污水、养猪废水和化工工业废水中氨氮的去除率分别为91.67%、91.65%和89.31%,与在模拟废水中的去除率基本一致.这为改性沸石的进一步实际应用奠定了基础.  相似文献   

6.
目的确定壳聚糖/沸石分子筛去除氨氮和硝酸盐氮的最佳投加量和最佳吸附时间,并建立吸附模型,同时验证模型的准确度.方法通过响应面(Response Surface M ethodology)试验设计方法,分析壳聚糖/沸石分子筛吸附颗粒对氨氮与硝酸盐氮去除的最佳投加量和最佳吸附时间.结果响应面法优化所得的最佳工艺条件为:壳聚糖/沸石分子筛投加量为6. 5~7. 0 g/L,吸附时间为6. 0~6. 5 h,在此条件下,原水中氨氮与硝酸盐氮的去除率达到最大,分别为80. 2%与40. 5%.试验结果与模型预测值相近,理论值与实测值相对误差均不超过2%.结论响应面法优化壳聚糖/沸石分子筛吸附氨氮和硝酸盐氮工艺参数合理.该新型吸附颗粒制备过程简单,操作方便,并能达到同步去除水中氨氮与硝酸盐氮的效果,可作为新型滤料用于北方地区水厂的提标改造.  相似文献   

7.
采用碱溶液浸泡及高温加热的方法对天然沸石进行活化,通过批实验考察了活化前后沸石对氨氮的吸附性能及影响因素,并进行了吸附动力学分析及脱附研究。结果表明:沸石粒径越小,对氨氮的吸附能力越强;较小粒径沸石(1.5 mm)经低浓度石灰水浸泡、150℃加热活化后,氨氮单位吸附量提高了11.2%和13.2%,但对较大粒径(3 mm)沸石的活化效果不明显;弱酸性条件最有利于沸石对氨氮的吸附。沸石对氨氮的平衡吸附量随着氨氮平衡浓度的增大而增大,Freundlich方程比Langmuir方程更适用于描述氨氮在沸石上的吸附行为;相比假一级动力学模型,假二级动力学模型能够更好地拟合沸石对氨氮的吸附动力学实验数据。在10 mmol/L Ca(OH)2中,氨氮的解吸率是在相同浓度Na Cl溶液中的3.5倍,即利用碱溶液作为沸石的洗脱剂,可大大提高其再生利用率。  相似文献   

8.
以天然沸石(NZ)作为去除水中左氧氟沙星(LEV)的吸附剂,通过静态吸附实验结合XRD、FT-IR和XRF等表征手段,针对NZ的结构及其对LEV的吸附效果、吸附机理进行探讨,并研究环境因素(包括腐殖酸和氨氮等)对吸附效果的影响.结果表明:XRD分析揭示了所用的NZ为斜发沸石;在LEV初始质量浓度为20 mg/L时,吸附达到饱和,最佳pH为6.5,吸附过程符合Langmuir模型,最大吸附容量为23.65 mg/g;吸附机理是离子交换和氢键作用;腐殖酸和氨氮的存在均使LEV的吸附量显著下降,推测主要是位点竞争和静电竞争抑制了NZ对LEV的吸附.  相似文献   

9.
粉煤灰沸石颗粒滤柱去除氮和磷的动态运行   总被引:1,自引:0,他引:1  
利用粉煤灰合成沸石,研究了其在去除污水中氨氮和磷酸盐方面的应用.结果表明,合成沸石对废水中的氨氮和磷酸盐具有显著的脱除效果.对氨氮和磷酸盐的吸附净化均随时间增加而变化,但均在24 h后基本达到平衡.随合成沸石投加量的增加,去除污水中氮、磷的效果越好,但在投加量为8 g·L-1 以上时去除率的增加明显放慢.合成沸石在pH为7~9时氨氮去除率最高,为60%以上,磷的去除相反,在pH为7~9时去除率最低,为85%左右.合成沸石对氨氮的吸附为放热反应,温度越高,氨氮去除率下降越明显;对磷的吸附为吸热反应,温度升高对合成沸石除磷有利.  相似文献   

10.
通过对低温下(5~15℃)火山岩、陶粒、沸石吸附水中氨氮的静态、动力学和热力学试验,分析探究低温条件下曝气生物滤池填料对水中氨氮的吸附能力。结果表明:火山岩、陶粒、沸石均在50 min内达到动态吸附平衡;在5、15℃时,沸石对20 mg/L氨氮吸附的平衡吸附量分别为0.120 8、0.138 4 mg/g,陶粒为0.117 6、0.125 9 mg/g,火山岩为0.059 3、0.074 2 mg/g;从15℃降低到5℃,火山岩、陶粒、沸石的平衡吸附量分别下降20.08%、6.60%、12.72%;通过等温模型拟合发现,在5~15℃温度条件下3种填料对氨氮均以单层吸附为主,吸附作用明显,且吸附反应为吸热反应。  相似文献   

11.
天然沸石对铵吸附能力的生物再生试验研究   总被引:10,自引:0,他引:10  
用浙江缙云的天然斜发沸石在实验室进行了吸附铵饱和沸石的生物再生静态试验,经过73d生物作用和离子交换作用,饱和沸石对铵的吸附能力恢复了61%~85%;在云南滇池流域进行了吸附大量铵的沸石的生物再生现场中试试验,经过4~6个月的自然生物再生过程,沸石对铵的吸附能力恢复了22%~36%。  相似文献   

12.
以粉煤灰为原料采用碱熔融法合成了两种单一沸石矿物种的NaA和NaX型沸石,通过静态吸附实验,研究了这两种沸石对水溶液中亚甲蓝(MB)的吸附特性,从动力学角度探讨了吸附机理.结果表明:在所研究的浓度和pH值条件下,合成NaA和NaX型沸石对亚甲蓝的吸附平衡数据符合Langmuir等温吸附方程,静态饱和吸附量(Qm)分别为37.81和43.02 mg.g-1;氢键作用是影响亚甲蓝吸附行为的主要因素;通过动边界模型研究表明,两种沸石对亚甲蓝吸附过程的速度控制步骤为液膜扩散,且亚甲蓝的吸附过程符合伪二级方程.  相似文献   

13.
天然沸石对甲基橙的吸附研究   总被引:1,自引:0,他引:1  
用分光光度法研究了天然沸石对甲基橙的吸附行为.较低的pH、较高的温度有利于吸附,3h吸附基本达到平衡,增加溶液中NaCl、CaCl2的浓度降低沸石对甲基橙的吸附量.随着平衡浓度增加,吸附量增大,且吸附符合Langmuir等温吸附方程,30℃时最大吸附量为7.06mg.g-1.  相似文献   

14.
天然沸石对含镍废水的吸附研究   总被引:2,自引:0,他引:2  
采用天然沸石对含镍废水进行吸附特性研究。考察了沸石粒径、接触时间、镍的初始浓度及溶液pH值等因素对沸石吸附镍的影响。结果表明,吸附25min后吸附接近平衡,溶液pH在4~6范围内,沸石对Ni2+去除效果较好,沸石粒径减小,Ni2+初始浓度提高,镍的吸附量增大。沸石对Ni2+的吸附动力学及热力学研究表明,在一定的实验条件下,Ni2+在沸石表面主要以单分子层吸附为主,符合Langmuir吸附等温式且吸附过程遵循准二阶动力学吸附模型(相关系数R>0.999)。  相似文献   

15.
对天然沸石粉及其改性后对水体中低浓度氨氮的吸附去除进行实验研究,发现当吸附时间是90min,废水pH值为5左右时,天然沸石粉的氨氮去除率达54.77%,吸附氨氮的效果最好;天然沸石粉在100℃下,经0.3 mol/L的氯化钠溶液改性效果最好,改性沸石粉在吸附时间60 min,pH为5时,氨氮去除率达98.85%,吸附氨氮的效果最好。综合比较在各自最优工艺条件下,最佳改性后的改性沸石粉是天然沸石粉吸附氨氮的1.81倍。  相似文献   

16.
以膨润土为主要原料,碱熔制备A沸石,结合静态吸附实验,研究膨润土、A沸石对溶液中锶的吸附以及吸附过程中动力学和热力学. 结果表明,膨润土、沸石对Sr2+的吸附能力受初始浓度影响,膨润土、沸石在吸附过程中的规律趋势大致相同. 膨润土和沸石对Sr2+的等温吸附过程符合Langmuir等温吸附模型,吸附机制为单分子层的阳离子交换吸附.膨润土和沸石对Sr2+的吸附机制相似,其动力学吸附过程为化学反应控制的拟二级动力学吸附过程. 对吸附前后的膨润土、沸石进行XRD、SEM表征分析,膨润土、沸石在酸性溶液中进行吸附不会对自身骨架结构产生严重破坏或影响. A沸石对Sr2+的吸附量约为膨润土的3.9倍,表现出比膨润土更优秀的吸附能力.  相似文献   

17.
对沸石、膨胀蛭石、瓷砂陶粒、页岩陶粒和黏土陶粒5种硅酸盐填料改性前后对水中磷的吸附性进行了研究,并分析了硅酸盐填料投加量、吸附时间和pH等因素对磷去除率的影响.结果表明:改性前,膨胀蛭石对磷的吸附性最好,瓷砂陶粒次之,黏土陶粒、页岩陶粒和沸石较差.经过镁盐和铝盐改性后,改性膨胀蛭石除磷效果最好,其最佳使用条件为:填料用量10 g/L,pH 5~9,吸附时间60 min,此时磷去除率可达97%以上.  相似文献   

18.
天然沸石的改性及其吸附Pb~(2+);Cu~(2+)的研究   总被引:1,自引:0,他引:1  
以天然沸石为原料,结合废水处理应用中对吸附材料的要求,采用酸、碱、盐对沸石进行了改性;并利用改性沸石进行了去除溶液中Pb2+,Cu2+的方法、效果、影响因素和吸附机理的研究.结果表明,NaOH改性的沸石对Pb2+,Cu2+的吸附能力大幅度提高;随着初始浓度的增加,沸石的吸附容量也增加;改性沸石对Pb2+,Cu2+的吸附很快,在较短的时间内即可达到平衡;溶液的pH值越高越有利于沸石吸附Pb2+,Cu2+.  相似文献   

19.
天然沸石对阳离子染料中性红的吸附及机理研究   总被引:1,自引:0,他引:1  
研究了天然沸石对中性红的吸附及其作用机理,考察了吸附剂用量、pH值、盐浓度、振荡时间、中性红初始质量浓度、温度等因素对沸石吸附中性红的影响.结果表明,吸附量随着吸附剂用量的增加而减少,但随着溶液pH值的增大、温度的升高以及盐浓度的降低而增加;吸附过程符合Langmuir吸附等温式.温度从288 K升高到308 K,中性红的饱和吸附量从14.79 mg/g升高到31.78mg/g.利用准二级动力学方程及粒子内扩散方程检验了吸附过程的动力学性质,结果表明,其吸附过程的速率控制步骤为膜扩散控制,并随溶液初始质量浓度的增加准二级速率常数降低,面内扩散速率常数增加.  相似文献   

20.
膨胀蛭石吸附氨氮的研究   总被引:1,自引:0,他引:1  
研究了膨胀蛭石对氨氮的吸附容量及pH、温度、进水氨氮浓度和膨胀蛭石用量对氨氮去除率的影响.结果表明,膨胀蛭石对氨氮的饱和吸附量为17.32 mg.g-1;氨氮去除率在pH 4.0~7.0范围内大于65%;在进水氨氮浓度低于200 mg.L-1时,氨氮去除率随着进水氨氮浓度增加而增大,为膨胀蛭石作为一种新型填料提供了基础数据和理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号