首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loss of functional cardiomyocytes is a major underlying mechanism for myocardial remodeling and heart diseases, due to the limited regenerative capacity of adult myocardium. Apoptosis, programmed necrosis, and autophagy contribute to loss of cardiac myocytes that control the balance of cardiac cell death and cell survival through multiple intricate signaling pathways. In recent years, non-coding RNAs (ncRNAs) have received much attention to uncover their roles in cell death of cardiovascular diseases, such as myocardial infarction, cardiac hypertrophy, and heart failure. In addition, based on the view that mitochondrial morphology is linked to three types of cell death, ncRNAs are able to regulate mitochondrial fission/fusion of cardiomyocytes by targeting genes involved in cell death pathways. This review focuses on recent progress regarding the complex relationship between apoptosis/necrosis/autophagy and ncRNAs in the context of myocardial cell death in response to stress. This review also provides insight into the treatment for heart diseases that will guide novel therapies in the future.  相似文献   

2.
3.
4.
MicroRNAs (miRNAs) are natural, single-stranded, small RNA molecules which subtly control gene expression. Several studies indicate that specific miRNAs can regulate heart function both in development and disease. Despite prevention programs and new therapeutic agents, cardiovascular disease remains the main cause of death in developed countries. The elevated number of heart failure episodes is mostly due to myocardial infarction (MI). An increasing number of studies have been carried out reporting changes in miRNAs gene expression and exploring their role in MI and heart failure. In this review, we furnish a critical analysis of where the frontier of knowledge has arrived in the fields of basic and translational research on miRNAs in cardiac ischemia. We first summarize the basal information on miRNA biology and regulation, especially concentrating on the feedback loops which control cardiac-enriched miRNAs. A focus on the role of miRNAs in the pathogenesis of myocardial ischemia and in the attenuation of injury is presented. Particular attention is given to cardiomyocyte death (apoptosis and necrosis), fibrosis, neovascularization, and heart failure. Then, we address the potential of miR-diagnosis (miRNAs as disease biomarkers) and miR-drugs (miRNAs as therapeutic targets) for cardiac ischemia and heart failure. Finally, we evaluate the use of miRNAs in the emerging field of regenerative medicine.  相似文献   

5.
Cardiovascular development: towards biomedical applicability   总被引:1,自引:0,他引:1  
Regardless of erroneous claims by a minority of reports, adult cardiomyocytes are terminally differentiated cells which do not re-enter the cell-cycle under any known physiological or pathological circumstances. However, it has recently been shown that the adult heart has a robust myocardial regenerative potential, which challenges the accepted notions of cardiac cellular biology. The source of this regenerative potential is constituted by resident cardiac stem cells (CSCs). These CSCs, through both cell transplantation and in situ activation, have the capacity to regenerate significant segmental and diffuse myocyte losts, restoring anatomical integrity and ventricular function. Thus, CSC identification has started a brand new discipline of cardiac biology that could profoundly changed the outlook of cardiac physiology and the potential for treatment of cardiac failure. Nonetheless, the dawn of this new era should not be set back by premature attempts at clinical application before having accumulated the required scientifically reproducible data.  相似文献   

6.
Cardiomyocytes continuously generate the contractile force to circulate blood through the body. Imbalances in contractile performance or energy supply cause adaptive responses of the heart resulting in adverse rearrangement of regular structures, which in turn might lead to heart failure. At the cellular level, cardiomyocyte remodeling includes (1) restructuring of the contractile apparatus; (2) rearrangement of the cytoskeleton; and (3) changes in energy metabolism. Dedifferentiation represents a key feature of cardiomyocyte remodeling. It is characterized by reciprocal changes in the expression pattern of “mature” and “immature” cardiomyocyte-specific genes. Dedifferentiation may enable cardiomyocytes to cope with hypoxic stress by disassembly of the energy demanding contractile machinery and by reduction of the cellular energy demand. Dedifferentiation during myocardial repair might provide cardiomyocytes with additional plasticity, enabling survival under hypoxic conditions and increasing the propensity to enter the cell cycle. Although dedifferentiation of cardiomyocytes has been described during tissue regeneration in zebrafish and newts, little is known about corresponding mechanisms and regulatory circuits in mammals. The recent finding that the cytokine oncostatin M (OSM) is pivotal for cardiomyocyte dedifferentiation and exerts strong protective effects during myocardial infarction highlights the role of cytokines as potent stimulators of cardiac remodeling. Here, we summarize the current knowledge about transient dedifferentiation of cardiomyocytes in the context of myocardial remodeling, and propose a model for the role of OSM in this process.  相似文献   

7.
MicroRNAs (miRNAs) are a recently discovered family of small regulatory molecules that function by modulating protein production. There are approximately 500 known mammalian miRNA genes, and each miRNA may regulate hundreds of different protein-coding genes. Mature miRNAs bind to target mRNAs in a protein complex known as the miRNA-induced silencing complex (miRISC), sometimes referred to as the miRNP (miRNA-containing ribonucleoprotein particles), where mRNA translation is inhibited or mRNA is degraded. These actions of miRNAs have been shown to regulate several developmental and physiological processes including stem cell differentiation, haematopoiesis, cardiac and skeletal muscle development, neurogenesis, insulin secretion, cholesterol metabolism and the immune response. Furthermore, aberrant expression has been implicated in a number of diseases including cancer and heart disease. The role of miRNAs in these developmental, physiological and pathological processes will be reviewed. Received 3 August 2007; received after revision 3 October 2007; accepted 5 October 2007  相似文献   

8.
The ability of cardiomyocytes to detect mechanical and humoral stimuli is critical for adaptation of the myocardium in response to new conditions and for sustaining the increased workload during stress. While certain stimuli mediate a beneficial adaptation to stress conditions, others result in maladaptive remodelling, ultimately leading to heart failure. Specific signalling pathways activating either adaptive or maladaptive cardiac remodelling have been identified. Paradoxically, however, in a number of cases, the transduction pathways involved in such opposing responses engage the same signalling proteins. A notable example is the Raf–MEK1/2–ERK1/2 signalling pathway that can control both adaptive and maladaptive remodelling. ERK1/2 signalling requires a signalosome complex where a scaffold protein drives the assembly of these three kinases into a linear pathway to facilitate their sequential phosphorylation, ultimately targeting specific effector molecules. Interestingly, a number of different Raf–MEK1/2–ERK1/2 scaffold proteins have been identified, and their role in determining the adaptive or maladaptive cardiac remodelling is a promising field of investigation for the development of therapeutic strategies capable of selectively potentiating the adaptive response.  相似文献   

9.
Technical advances in generating and phenotyping cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are now driving their wider acceptance as in vitro models to understand human heart disease and discover therapeutic targets that may lead to new compounds for clinical use. Current literature clearly shows that hPSC-CMs recapitulate many molecular, cellular, and functional aspects of human heart pathophysiology and their responses to cardioactive drugs. Here, we provide a comprehensive overview of hPSC-CMs models that have been described to date and highlight their most recent and remarkable contributions to research on cardiovascular diseases and disorders with cardiac traits. We conclude discussing immediate challenges, limitations, and emerging solutions.  相似文献   

10.
Activation of the type 1 angiotensin II receptor (AT(1)R) is associated with the aetiology of left ventricular hypertrophy, although the exact intracellular signalling mechanism(s) remain unclear. Transactivation of the epidermal growth factor receptor (EGFR) has emerged as a central mechanism by which the G protein-coupled AT(1)R, which lacks intrinsic tyrosine kinase activity, can stimulate the mitogen-activated protein kinase signalling pathways thought to mediate cardiac hypertrophy. Current studies support a model whereby AT(1)R-dependent transactivation of EGFRs on cardiomyocytes involves stimulation of membrane-bound metalloproteases, which in turn cleave EGFR ligands such as heparin-binding EGF from a plasma membrane-associated precursor. Numerous aspects of the 'triple membrane-passing signalling' paradigm of AT(1)R-induced EGFR transactivation remain to be characterised, including the identity of the specific metalloproteases involved, the intracellular mechanism for their activation and the exact EGFR subtypes required. Here we examine how 'hijacking' of the EGFR might explain the ability of the AT(1)R to elicit the temporally and qualitatively diverse responses characteristic of the hypertrophic phenotype, and discuss the ramifications of delineating these pathways for the development of new therapeutic strategies to combat cardiac hypertrophy.  相似文献   

11.
MicroRNAs (miRNAs), a novel class of molecules regulating gene expression, have been hailed as modulators of many biological processes and disease states. Recent studies demonstrated an important role of miRNAs in the processes of inflammation and cancer, however, there are little data implicating miRNAs in peripheral pain. Bladder pain syndrome/interstitial cystitis (BPS/IC) is a clinical syndrome of pelvic pain and urinary urgency/frequency in the absence of a specific cause. BPS is a chronic inflammatory condition that might share some of the pathogenetic mechanisms with its common co-morbidities inflammatory bowel disease (IBD), asthma and autoimmune diseases. Using miRNA profiling in BPS and the information about validated miRNA targets, we delineated the signaling pathways activated in this and other inflammatory pain disorders. This review projects the miRNA profiling and functional data originating from the research in bladder cancer and immune-mediated diseases on the BPS-specific miRNAs with the aim to gain new insight into the pathogenesis of this enigmatic disorder, and highlighting the common regulatory mechanisms of pain and inflammation.  相似文献   

12.
13.
Cardiac fibrosis is characterized by net accumulation of extracellular matrix proteins in the cardiac interstitium, and contributes to both systolic and diastolic dysfunction in many cardiac pathophysiologic conditions. This review discusses the cellular effectors and molecular pathways implicated in the pathogenesis of cardiac fibrosis. Although activated myofibroblasts are the main effector cells in the fibrotic heart, monocytes/macrophages, lymphocytes, mast cells, vascular cells and cardiomyocytes may also contribute to the fibrotic response by secreting key fibrogenic mediators. Inflammatory cytokines and chemokines, reactive oxygen species, mast cell-derived proteases, endothelin-1, the renin/angiotensin/aldosterone system, matricellular proteins, and growth factors (such as TGF-β and PDGF) are some of the best-studied mediators implicated in cardiac fibrosis. Both experimental and clinical evidence suggests that cardiac fibrotic alterations may be reversible. Understanding the mechanisms responsible for initiation, progression, and resolution of cardiac fibrosis is crucial to design anti-fibrotic treatment strategies for patients with heart disease.  相似文献   

14.
MicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes.  相似文献   

15.
In the past decades, the cardiovascular community has laid out the fundamental signaling cascades that become awry in the cardiomyocyte during the process of pathologic cardiac remodeling. These pathways are initiated at the cell membrane and work their way to the nucleus to mediate gene expression. Complexity is multiplied as the cardiomyocyte is subjected to cross talk with other cells as well as a barrage of extracellular stimuli and mechanical stresses. In this review, we summarize the signaling cascades that play key roles in cardiac function and then we proceed to describe emerging concepts of how the cardiomyocyte senses the mechanical and environmental stimuli to transition to the deleterious genetic program that defines pathologic cardiac remodeling. As a highlighting example of these processes, we illustrate the transition from a compensated hypertrophied myocardium to a decompensated failing myocardium, which is clinically manifested as decompensated heart failure.  相似文献   

16.
17.
Congenital heart defects affect approximately 1–5 % of human newborns each year, and of these cardiac defects 20–30 % are due to heart valve abnormalities. Recent literature indicates that the key factors and pathways that regulate valve development are also implicated in congenital heart defects and valve disease. Currently, there are limited options for treatment of valve disease, and therefore having a better understanding of valve development can contribute critical insight into congenital valve defects and disease. There are three major signaling pathways required for early specification and initiation of endothelial-to-mesenchymal transformation (EMT) in the cardiac cushions: BMP, TGF-β, and Notch signaling. BMPs secreted from the myocardium set up the environment for the overlying endocardium to become activated; Notch signaling initiates EMT; and both BMP and TGF-β signaling synergize with Notch to promote the transition of endothelia to mesenchyme and the mesenchymal cell invasiveness. Together, these three essential signaling pathways help form the cardiac cushions and populate them with mesenchyme and, consequently, set off the cascade of events required to develop mature heart valves. Furthermore, integration and cross-talk between these pathways generate highly stratified and delicate valve leaflets and septa of the heart. Here, we discuss BMP, TGF-β, and Notch signaling pathways during mouse cardiac cushion formation and how they together produce a coordinated EMT response in the developing mouse valves.  相似文献   

18.
5′-AMP-activated protein kinase (AMPK) is a pivotal regulator of endogenous defensive molecules in various pathological processes. The AMPK signaling regulates a variety of intracellular intermedial molecules involved in biological reactions, including glycogen metabolism, protein synthesis, and cardiac fibrosis, in response to hypertrophic stimuli. Studies have revealed that the activation of AMPK performs a protective role in cardiovascular diseases, whereas its function in cardiac hypertrophy and cardiomyopathy remains elusive and poorly understood. In view of the current evidence of AMPK, we introduce the biological information of AMPK and cardiac hypertrophy as well as some upstream activators of AMPK. Next, we discuss two important types of cardiomyopathy involving AMPK, RKAG2 cardiomyopathy, and hypertrophic cardiomyopathy. Eventually, therapeutic research, genetic screening, conflicts, obstacles, challenges, and potential directions are also highlighted in this review, aimed at providing a comprehensive understanding of AMPK for readers.  相似文献   

19.
20.
As one of the most important second messengers, 3′,5′-cyclic adenosine monophosphate (cAMP) mediates various extracellular signals including hormones and neurotransmitters, and induces appropriate responses in diverse types of cells. Since cAMP was formerly believed to transmit signals through only two direct target molecules, protein kinase A and the cyclic nucleotide-gated channel, the sensational discovery in 1998 of another novel direct effecter of cAMP [exchange proteins directly activated by cAMP (Epac)] attracted a great deal of scientific interest in cAMP signaling. Numerous studies on Epac have since disclosed its important functions in various tissues in the body. Recently, observations of genetically manipulated mice in various pathogenic models have begun to reveal the in vivo significance of previous in vitro or cellular-level findings. Here, we focused on the function of Epac in the heart. Accumulating evidence has revealed that both Epac1 and Epac2 play important roles in the structure and function of the heart under physiological and pathological conditions. Accordingly, developing the ability to regulate cAMP-mediated signaling through Epac may lead to remarkable new therapies for the treatment of cardiac diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号