首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
高位水平钻孔瓦斯抽采技术是解决矿井瓦斯危害问题十分有效的工程技术手段.瓦斯抽采水平钻孔施工层位需要布置在覆岩采动裂隙带发育范围内,而复合顶板的采动裂隙带发育范围往往难以确定,导致钻孔施工层位不准确严重影响瓦斯抽采效率.为研究覆岩采动裂隙发育范围,精准确定水平钻孔布置层位,依据煤层开采覆岩变形破坏一般特征,采用钻孔电阻率法对李雅庄煤矿2607工作面开采覆岩裂隙发育特征进行动态监测,分析了不同采动时段的视电阻率响应特征和变化规律,得到覆岩裂隙发育分布的主要层位.研究表明:裂隙带主要发育范围位于煤层顶板26~47.5 m高度内的砂岩层,确定为瓦斯抽采的最佳层位,现场瓦斯抽采试验验证了该层位的准确性.钻孔电阻率法在覆岩裂隙动态监测方面具有较高的精度,为提高瓦斯抽采效率和降低瓦斯抽采成本提供了较重要的技术保障.  相似文献   

2.
为解决工作面回采期间上隅角瓦斯超限问题,针对硫磺沟煤矿(4-5)04工作面实际情况,应用物理相似模拟实验的方法,研究了工作面采动覆岩"三带"分布特征及覆岩裂隙分布特征规律开展研究,结合工作面实际情况设计高位钻孔抽采上隅角瓦斯的方法,并对抽采效果开展实时观测与分析。结果表明:通过物理相似模拟实验,得到(4-5)04工作面覆岩"三带"高度,上覆岩石裂隙分布范围,工作面初次来压、周期来压步距,裂隙区在切眼、工作面及进回风巷出的宽度等参数来指导和确定现场高位钻孔的布置;通过现场实时观测,得到高位钻孔抽采浓度为19.85%~23%,有效抽采段距离平均为54.5 m,可以保证上隅角瓦斯瓦斯浓度维持在0.08%~0.45%,回风巷瓦斯浓度维持在0.15%~0.48%,(4-5)04工作面安全高效回采,表明高位钻孔抽采方法和设计参数是科学有效的。  相似文献   

3.
针对八连城煤矿19号煤层62.1%~71.6%的瓦斯来源于采空区的问题,提出高位顺层钻孔抽放采空区瓦斯的治理方案.基于关键层理论和"O"形圈理论,分析了采空区上覆岩层裂隙形态,对瓦斯在其中的运移规律进行了研究,认为在上覆岩层采动裂隙中瓦斯流动符合达西定律.利用商业软件COMSOL-Multiphysics对瓦斯抽放进行了数值模拟,直观展示了瓦斯抽采时的瓦斯分布状态.模拟结果表明瓦斯抽放有效降低了瓦斯压力,给现场瓦斯抽放提供了理论依据,具有重要的实践意义.  相似文献   

4.
为解决相邻两工作面上隅角瓦斯超限难题和实现高抽巷"一巷两用",提出外错高抽巷布置方式:沿上工作面回风顺槽侧,在煤层顶板内外错布置走向高抽巷;在高抽巷服务前期,在其内采用高位钻孔抽采上工作面采动卸压瓦斯;在高抽巷服务后期,直接采用高抽巷抽采下工作面采动卸压瓦斯;实现1条高抽巷服务于相邻两工作面,提高高抽巷利用效率。基于山西霍州煤田集团李雅庄煤矿2-603工作面地质条件,建立外错高抽巷围岩结构力学模型,采用理论分析、数值模拟、相似材料模拟及现场实测等研究方法系统分析工作面覆岩采动裂隙发育特征,研究覆岩采动裂隙分布规律,确定外错高抽巷和高位抽采钻孔布置参数;基于高位钻孔测斜结果,提出角度补偿纠偏方法及纠偏效果评价指标。高抽巷位于2煤层顶板25.0 m处,外错2-603工作面25.0 m;高位钻孔终孔位于顶板44.0 m处,水平及倾斜方向上的纠偏角分别为-3°和-2°。研究结果表明:高抽巷受2-603工作面采动影响较小,巷道断面能满足下区段2-605工作面抽采要求;高位钻孔终孔位置合理,高位钻孔抽采瓦斯体积分数高,且持续抽采时间长;采用角度补偿纠偏方法后钻孔瓦斯体积分数的最大值和平均值较纠偏前分别提高15.3%和11.6%,2-603工作面生产班、检修班上隅角瓦斯体积分数分别为0.504%~0.951%和0.467%~0.893%,解决了工作面隅角瓦斯超限难题,保障了工作面安全高效开采。  相似文献   

5.
为研究低瓦斯高强度开采综放工作面采动覆岩裂隙演化过程中瓦斯的运移规律,提高矿井瓦斯治理能力,以王家岭矿12302工作面为例,研究了煤层开采后上覆岩层的垮落和位移特征,通过分形维数定量描述了裂隙的发育情况,得到了覆岩的三带高度、跨落角、裂隙区等参数,以此参数建立数值模型研究采动裂隙与瓦斯运移的耦合特性,将研究结果应用于现场的卸压瓦斯的抽采设计并进行了效果检验。结果表明:走向模型的冒落带为28.2 m,裂隙带为118.6 m,切眼处和停采线处的垮落角分别为59.5°和51.5°,倾向模型的冒落带为28.2 m,裂隙带为113.6 m,进刀端和停采线处的垮落角分别为62.5°和55.5°;随着工作面开采距离的增加,分形维数先增大后减小最后趋于平稳;采场卸压瓦斯整体上有向上、向采空区深部、向回风巷一侧运移的特性,采空区深部瓦斯浓度可达20%,上隅角瓦斯浓度接近1.5%,采动裂隙带瓦斯聚集区位于距回风巷20~50 m、高度距煤层顶板25~50 m范围内;采用高位定向长钻孔抽采采动裂隙带聚集瓦斯的抽采效果较好,上隅角和回风流瓦斯浓度均小于0.8%,保证了矿井的安全生产,为类似条件下的瓦斯治理提供参考。  相似文献   

6.
高位钻孔瓦斯抽放参数的确定   总被引:3,自引:0,他引:3  
为防治煤矿瓦斯灾害和有效开采瓦斯资源,基于高位钻孔瓦斯抽放理论,在分析采空区顶板覆岩空间垮落规律及采动裂隙"0"形圈理论基础上,给出了钻孔有效高度范围的理论计算方法及钻孔沿倾向的布置范围,得出了钻场间距应小于实际施工的钻孔长度与钻孔重叠区之差的结论.在现场应用中取得了良好的技术与经济效果.  相似文献   

7.
常村矿470水平单一煤层工作面巷道采用"两进两回"设计,煤量损失大,瓦斯抽放效率低。运用FLAC3D模拟回采过程中上覆岩层破坏规律,确定了关键层,对3#煤层上覆岩层的裂隙发育与分布具有重要作用;运用UDEC模拟回采过程中上覆岩层裂隙发育及分布规律,得到工作面走向方向裂隙发育区域和竖直方向裂隙发育区域。根据现场对2103工作面的临近工作面裂隙带的测试结果,拟合出了3#煤层上覆岩层冒落带、裂隙发育带与裂隙带竖向高度与工作面走向的关系曲线;根据FLAC3D,UDEC与现场测试结果,确定了2103工作面高位瓦斯抽放巷的设计参数。  相似文献   

8.
为解决工作面隅角瓦斯超限难题,提出了在外错高抽巷内布置高位钻孔抽采工作面覆岩采动卸压瓦斯方法。针对李雅庄煤矿2-603工作面开采技术条件,建立了高位钻孔围岩结构力学模型,采用理论分析、数值模拟分析及现场实测分析等方法,确定了外错高抽巷内高位钻孔终孔合理位置。首先,覆岩采动裂隙主要分布在上山采动角62°以内,下山采动角65°以内,距离煤层底板13~25 m和38.6~50 m等2个区域,高位钻孔终孔应布置于第二区域内。其次,高位钻孔终孔位于2煤顶板44 m处,采空区内投影长度不小于28 m时,钻孔抽采瓦斯浓度高,且持续抽采时间长。最后,工程应用效果表明,2-603工作面上隅角瓦斯浓度生产班、检修班分别为0.50%~0.95%,0.47%~0.89%,避免了隅角瓦斯超限,保障了工作面安全高效回采。  相似文献   

9.
为提高瓦斯抽采率和揭示保护层采动覆岩裂隙演化规律以及定量分析保护层卸压增透范围,将覆岩裂隙定义为具有开裂损伤功能的粘结单元,利用ABAQUS开发了粘结单元本构关系,建立了采动覆岩砌体结构内聚力模型,进行了粘结单元表征下的保护层采动裂隙演化数值模拟,通过粘结单元损伤程度分析采动裂隙发育状态,根据裂纹的连通状态界定采场覆岩损伤破坏区域,并得到了采动卸压范围及渗透率分布规律,采动裂隙演化规律模拟结果与实验一致,验证了覆岩砌体结构内聚力模型的精准性.  相似文献   

10.
为研究复杂煤层群条件下覆岩裂隙的发育规律,对405工作面地面采空区钻井瓦斯抽放进行实测.根据瓦斯抽放体积分数确定裂隙活化区,结合模拟分析等手段,总结出覆岩采动裂隙演化规律.结果表明:回采巷道内侧垂直方向上30~40 m、水平方向上距回采巷道30~50 m、采空区距工作面30~80 m范围为裂隙较发育区域.  相似文献   

11.
为阐明采动和降雨入渗条件下含深大裂隙岩溶山体变形和破坏规律,以贵州省纳雍县普洒滑坡为例,通过块体离散元数值分析,探讨煤层开挖扰动和降雨入渗作用下含深大裂隙岩溶山体失稳破坏机制。结果表明,随着M10和M14煤层开采,山体上覆岩层向采空区方向下移,新生裂隙向坡表发育。工作面上覆岩层裂隙带高度随采空区范围的增大而增加,M10和M14开采结束后,裂隙带分别发育至30倍和40倍采高,坡顶深大岩溶裂隙向坡下扩展。降雨入渗后,上覆岩层裂隙带与深大岩溶裂隙贯通,在孔隙水压力作用下深大岩溶裂隙向坡表扩展形成贯通滑动面,岩溶坡体发生崩滑破坏。研究发现,地下采动是普洒老鹰岩山体变形破坏的控制因素,后续降雨是山体失稳的主要诱发因素。  相似文献   

12.
大采高开采的方法是提高煤炭资源回收、实现矿井高产高效的重要发展方向,但也造成工作面覆岩破坏严重。为此,文中以宁东煤田赋存的覆沙层下特厚煤层为背景开展大采全高工作面覆岩运移研究,运用相似模拟的方法并综合多种监测仪器从模拟现象、力源两个角度对大采高工作面覆岩运移、下沉乃至垮落的特征进行了全程监测与分析。研究表明:大采高工作面覆岩垮落初次来压步距较大,支架带压移架后极易发生直接顶乃至老顶的突然垮落,工作面来压强烈、伴随有明显的支架动载现象;延伸至地表的裂隙有诱发地表覆沙层弯曲、有溃入工作面的可能;模型开采结束后形成了6条贯穿至地表且与工作面推进方向成60°的垮落裂缝;模型内部各岩层下沉范围随着工作面的推进而不断扩大,呈U字型下沉趋势。  相似文献   

13.
覆岩采动裂隙演化形态的相似材料模拟实验   总被引:3,自引:1,他引:2  
煤层开采后,覆岩采动裂隙演化规律及其形态特征与卸压瓦斯抽采密切相关。通过沿工作面走向及倾向相似材料模拟实验,得到覆岩采动破断裂隙的产生、发展为三阶段演化规律,形态呈"M"状。离层裂隙呈两大阶段、两个层位、三个区间的演化特征,即在主关键层触矸前,分布形态在垮落的最上位亚关键层上部,呈倒"V"状,下部呈"M"状;当主关键层触矸后,主关键层下部离层分布形态呈"M"状,上部少有离层发育。基于此,得到了覆岩采动裂隙演化形态与特征,提出了"采动裂隙圆角矩形梯台带"工程简化模型,为确定卸压瓦斯抽采钻孔参数提供了一定理论依据。  相似文献   

14.
采动岩体瓦斯渗流规律   总被引:1,自引:1,他引:0  
为了实现瓦斯的高效抽放,解决煤与瓦斯的安全共采问题,基于煤岩介质力学性质及变形破裂过程的渗透特性,采用相似模拟试验和岩石破裂分析系统(RFPA2D)数值计算方法,模拟研究受采动影响的上覆岩层裂隙发育规律和瓦斯渗流规律。研究结果表明,随着开采工作面推进,顶板出现周期性垮落,老顶垮落步距约为12 m,其顶板破断角度约为50°,工作面和切眼上方裂隙发育基本对称,覆岩下沉曲线整体呈左右对称碗状;在卸压带内,煤体膨胀变形生成的大量次生裂隙,增加了煤体的渗透性,覆岩横向离层裂隙和竖向破断裂隙的动态发育变化,为实现煤与瓦斯的共采创造条件。工业性试验验证了受采动影响下推进距离和工作面瓦斯抽放量间呈非线性关系,为进一步理解采动影响下煤与瓦斯共采提供了理论基础和科学依据。  相似文献   

15.
基于国内外研究结论,本文以皖北矿区百善煤矿6煤层为研究对象,通过分析浅部煤层保水开采机理和关键,提出以"上覆岩层水体渗流速度确定工作面推进速度"的思路(工作面推进速度能使关键层采后破断的砌体在上部水体渗流到采空区前闭合)。根据渗流理论、经验公式和实测资料等,对保水开采分类中工作面上覆岩层中的潜水渗流时间进行公式推导及计算;根据关键层理论和百善煤矿地质资料,计算出各分类上覆岩层初次和周期破断距。由此,计算和确定出各分类工作面推进速度,同时,以推进速度下限和采煤机切割速度确定安全保水开采的工作面长度范围。进一步完善保水开采技术体系,为浅部煤层保水开采技术的安全应用提供理论指导。  相似文献   

16.
通过对焦家寨煤矿2号煤层22105综采中位放顶煤工作面的矿压观测和研究分析,明确了工作面上覆岩层的运动变化规律、变化参数以及矿压显现程度对工作面生产的影响,可为今后工作面两巷超前支护及采煤设备、支架选型提供重要的决策依据。  相似文献   

17.
基于 ANSYS 软件的 UPFs 二次开发平台,借助损伤变量描述煤岩体的裂隙演化,建立弹性损伤本构模型,对单一煤层分步开采过程进行模拟并研究其损伤演化规律。研究表明,随着工作面的推进,损伤不断扩展,覆岩损伤场的分布形态沿走向由“拱形”向“马鞍形”转变。上覆岩层水平方向中部观测线上,随岩层深度的增加,观测到的初始损伤值减小,损伤增长剧烈程度增加。  相似文献   

18.
为了研究在工作面推进过程中上覆岩层冒落情况,基于“支架梁”模型理论、连续介质力学和损伤介质力学原理,采用RFPA^2D分析系统,模拟了岩石从裂纹萌生、扩展直至断裂的全过程,再现了煤层采动中其上覆岩层来压及工作面推进过程中剪应力、岩层下沉的变化规律。结果表明:厚顶对上覆岩层的运动起控制作用,它是该岩层系统中的关键层,另外,随着工作面向前推进,在工作面前方煤壁形成支承压应力升高区,上覆各岩层的下沉量不断增加。  相似文献   

19.
由于采场覆岩破坏高度及破坏程度是上行开采研究的最重要内容,因此,在对我国放顶煤开采典型覆岩工程地质条件分析的基础上,本文对放顶煤开采覆岩破坏高度进行现场实测统计分析,找出放顶煤开采覆岩破坏高度受地质因素的影响规律,从而为放顶煤条件下上行开采研究提供科学依据.  相似文献   

20.
针对目前综放开采条件下对顶板岩移破坏时空演化规律研究不足的问题,采用相似模拟实验的方法对综放开采条件下覆岩移动和破坏机制以及采动裂隙分布规律和形态特征进行研究,结果表明:随工作面推进裂隙带逐渐地往上演化发展,而且当关键性岩层垮落断裂时,这种裂隙演化更为迅速;当工作面回采至240m时,离层裂隙趋于闭合,采动影响达到模型的顶部,裂隙带高度不再随着工作面推进距离的变化而改变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号