首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cutaneous wound healing is a complex and highly coordinated process where a number of different cell types participate to renew the damaged tissue under the strict regulation of soluble and insoluble factors. One of the most versatile processes involved in wound repair is proteolysis. During cell migration, proteins of extracellular matrix are cleaved, often creating biologically active cleavage products, and proteolysis of cellular contacts leads to increased cell motility and division. Moreover, proteases activate various growth factors and other proteases in wound and regulate growth factor signaling by shedding growth factor receptors on cell surface. Normally, proteolysis is strictly controlled, and changes in protease activity are associated with alterations in wound closure and scar formation. Here, we present the current view on the role of metalloproteinases and the plasmin-plasminogen system in normal and aberrant cutaneous wound repair and discuss their role as potential therapeutic targets for chronic ulcers or fibrotic scars. Received 07 July 2008; received after revision 11 August 2008; accepted 13 August 2008  相似文献   

2.
Following a skin injury, the damaged tissue is repaired through the coordinated biological actions that constitute the cutaneous healing response. In mammals, repaired skin is not identical to intact uninjured skin, however, and this disparity may be caused by differences in the mechanisms that regulate postnatal cutaneous wound repair compared to embryonic skin development. Improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for wound healing complications. Here we focus on the roles of several key developmental signaling pathways (Wnt/β-catenin, TGF-β, Hedgehog, Notch) in mammalian cutaneous wound repair, and compare this to their function in skin development. We discuss the varying responses to cutaneous injury across the taxa, ranging from complete regeneration to scar tissue formation. Finally, we outline how research into the role of developmental pathways during skin repair has contributed to current wound therapies, and holds potential for the development of more effective treatments.  相似文献   

3.
结缔组织生长因子(CTGF/CCN2)属于即刻早期基因编码的CCN家族中的一员,参与正常细胞增殖、黏附、迁移、凋亡及新生血管形成,在创伤修复、纤维化疾病和肿瘤形成中也具有重要的作用。新近研究发现,CTGF在肺癌组织中表达较正常肺组织降低,与肺癌的发生、发展密切相关,被视为肺癌转移和预后的评价指标。本文简要介绍了CTGF的结构、功能及在其肺癌中的研究进展,以期为肺癌的临床治疗提供新的思路。  相似文献   

4.
Astrocytic activation is a cellular response to disturbances of the central nervous system (CNS). Recent advances in cellular and molecular biology have demonstrated the remarkable changes in molecular signaling, morphology, and metabolism that occur during astrocyte activation. Based on these studies, it has become clear that the astrocyte activation process is regulated by a variety of signaling pathways, which result in metabolic support, wound healing and scar formation. While normal astrocyte activation pathways drive homeostasis and/or repair in the CNS, dysregulation of these pathways can lead to astrocyte abnormalities, including glioma formation with similar phenotypes as reactive astrocytes. We review the principle pathways responsible for astrocytic activation, as well as their potential contribution to tumor formation in the CNS.  相似文献   

5.
Plasma membrane forms the barrier between the cytoplasm and the environment. Cells constantly and selectively transport molecules across their plasma membrane without disrupting it. Any disruption in the plasma membrane compromises its selective permeability and is lethal, if not rapidly repaired. There is a growing understanding of the organelles, proteins, lipids, and small molecules that help cells signal and efficiently coordinate plasma membrane repair. This review aims to summarize how these subcellular responses are coordinated and how cellular signals generated due to plasma membrane injury interact with each other to spatially and temporally coordinate repair. With the involvement of calcium and redox signaling in single cell and tissue repair, we will discuss how these and other related signals extend from single cell repair to tissue level repair. These signals link repair processes that are activated immediately after plasma membrane injury with longer term processes regulating repair and regeneration of the damaged tissue. We propose that investigating cell and tissue repair as part of a continuum of wound repair mechanisms would be of value in treating degenerative diseases.  相似文献   

6.
Fibrocytes: a unique cell population implicated in wound healing   总被引:8,自引:0,他引:8  
Following tissue damage, host wound healing ensues. This process requires an elaborate interplay between numerous cell types which orchestrate a series of regulated and overlapping events. These events include the initiation of an antigen-specific host immune response, blood vessel formation, as well as the production of critical extracellular matrix molecules, cytokines and growth factors which mediate tissue repair and wound closure. Connective tissue fibroblasts are considered essential for successful wound healing; however, their origin remains a mystery. A unique cell population, known as fibrocytes, has been identified and characterized. One of the unique features of these blood-borne cells is their ability to home to sites of tissue damage. This article reviews the identification and characterization of fibrocytes, summarizes the potential role of fibrocytes in the numerous steps of the wound-healing process and highlights the potential role of fibrocytes in fibrotic disease pathogenesis.Received 25 November 2002; received after revision 31 December 2002; accepted 16 January 2003  相似文献   

7.
8.
Fenofibrate, a peroxisome proliferator-activated receptor (PPAR)-alpha activator, used as a normolipidemic agent, is thought to offer additional beneficial effects in atherosclerosis. Since angiogenesis is involved in plaque progression, hemorrhage, and instability, the main causes of ischemic events, this study was designed to evaluate the action of fenofibrate on angiogenesis. Our results show that fenofibrate (i) inhibits endothelial cell proliferation induced by angiogenic factors, followed at high concentrations by an increase in apoptosis, (ii) inhibits endothelial cell migration in a healing wound model, (iii) inhibits capillary tube formation in vitro, and (iv) inhibits angiogenesis in vivo. Concerning the mechanism of action, the inhibition of endothelial cell migration by fenofibrate can be explained by a disorganization of the actin cytoskeleton. At the molecular level, fenofibrate markedly decreased basic fibroblast growth factor-induced Akt activation and cyclooxygenase 2 gene expression. This inhibition of angiogenesis could participate in the beneficial effect of fenofibrate in atherosclerosis.  相似文献   

9.
Stress proteins in neural cells: functional roles in health and disease   总被引:11,自引:0,他引:11  
Heat shock proteins (HSPs) or stress proteins participate in protein synthesis, protein folding, transport and translocalization processes. Stress situations trigger a heat shock response leading to their induction. Similarly, they can be upregulated by impairment of the proteasomal degradation pathway. The upregulation of stress proteins is an important step in prevention of protein aggregation and misfolding after stress, and also is essential during development and differentiation. A number of HSPs are constitutively or inducibly expressed in the nervous system and connected to protection of nerve cells and glia. The cytoskeleton is affected by stress, and HSPs have been shown to interact with the cytoskeleton in normal cells and to assist proper assembly, spatial organization and cross-linking properties. The integrity of the cytoskeleton is disturbed in many neurodegenerative disorders, and filamentous cytoplasmic inclusion bodies, containing a variety of HSPs, are observed. This review summarizes the recent literature on the presence and induction of HSPs in neural cells, and their possible functional roles in health and disease are discussed.  相似文献   

10.
A major challenge in cancer treatment is the development of therapies that target cancer cells with little or no toxicity to normal tissues and cells. Alterations in DNA double strand break (DSB) repair in cancer cells include both elevated and reduced levels of key repair proteins and changes in the relative contributions of the various DSB repair pathways. These differences can result in increased sensitivity to DSB-inducing agents and increased genomic instability. The development of agents that selectively inhibit the DSB repair pathways that cancer cells are more dependent upon will facilitate the design of therapeutic strategies that exploit the differences in DSB repair between normal and cancer cells. Here, we discuss the pathways of DSB repair, alterations in DSB repair in cancer, inhibitors of DSB repair and future directions for cancer therapies that target DSB repair.  相似文献   

11.
Interleukin (IL)-1 is a proinflammatory cytokine with important roles in innate immunity, as well as in normal tissue homeostasis. Interestingly, recent studies have also shown IL-1 to function in the dynamics of the actin cytoskeleton and cell junctions. For example, treatment of different epithelia with IL-1α often results in the restructuring of the actin network and cell junctions, thereby leading to junction disassembly. In this review, we highlight new and interesting findings that show IL-1 to be a critical player of restructuring events in the seminiferous epithelium of the testis during spermatogenesis.  相似文献   

12.
The Ras family of GTPases in cancer cell invasion   总被引:3,自引:0,他引:3  
The ability of tumoral cells to invade surrounding tissues is a prerequisite for metastasis. This is the most life-threatening event of tumor progression, and so research is intensely focused on elucidating the mechanisms responsible for invasion and metastasis. The Ras superfamily of GTPases comprises several subfamilies of small GTP-binding proteins whose functions include the control of proliferation, differentiation, and apoptosis, as well as cytoskeleton organization. The development of metastasis is a multistep process that requires coordinated activation of proliferation, motility, changes in normal cell-to-cell and cell-to-substrate contacts, degradation of extracellular matrix, inhibition of apoptosis, and adaptation to an inappropriate tissue environment. Several members of the Ras superfamily of proteins have been implicated in these processes. The present review summarizes the current knowledge in this field.  相似文献   

13.
Repair of wounds usually results in restoration of organ function, even if suboptimal. However, in a minority of situations, the healing process leads to significant scarring that hampers homeostasis and leaves the tissue compromised. This scar is characterized by an excess of matrix deposition that remains poorly organized and weakened. While we know much of the early stages of the repair process, the transition to wound resolution that limits scar formation is poorly understood. This is particularly true of the inducers of scar formation. Here, we present a hypothesis that it is the matrix itself that is a primary driver of scar, rather than being simply the result of other cellular dysregulations.  相似文献   

14.
The skin is our primary shield against microbial pathogens and has evolved innate and adaptive strategies to enhance immunity in response to injury or microbial insult. The study of antimicrobial peptide (AMP) production in mammalian skin has revealed several of the elegant strategies that AMPs use to prevent infection. AMPs are inducible by both infection and injury and protect the host by directly killing pathogens and/or acting as multifunctional effector molecules that trigger cellular responses to aid in the anti-infective and repair response. Depending on the specific AMP, these molecules can influence cytokine production, cell migration, cell proliferation, differentiation, angiogenesis and wound healing. Abnormal production of AMPs has been associated with the pathogenesis of several cutaneous diseases and plays a role in determining a patient’s susceptibility to pathogens. This review will discuss current research on the regulation and function of AMPs in the skin and in skin disorders.  相似文献   

15.
Cell membranes are structurally heterogeneous, composed of discrete domains with unique physical and biological properties. Membrane domains can form through a number of mechanisms involving lipid–lipid and protein–lipid interactions. One type of membrane domain is the cholesterol-dependent membrane raft. How rafts form remains a current topic in membrane biology. We review here evidence of structuring of rafts by the cortical actin cytoskeleton. This includes evidence that the actin cytoskeleton associates with rafts, and that many of the structural and functional properties of rafts require an intact actin cytoskeleton. We discuss the mechanisms of the actin-dependent raft organization, and the properties of the actin cytoskeleton in regulating raft-associated signaling events. We end with a discussion of membrane rafts and the actin cytoskeleton in T cell activation, which function synergistically to initiate the adaptive immune response.  相似文献   

16.
Vinculin was identified as a component of focal adhesions and adherens junctions nearly 40 years ago. Since that time, remarkable progress has been made in understanding its activation, regulation and function. Here we discuss the current understanding of the roles of vinculin in cell–cell and cell–matrix adhesions. Emphasis is placed on the how vinculin is recruited, activated and regulated. We also highlight the recent understanding of how vinculin responds to and transmits force at integrin- and cadherin-containing adhesion complexes to the cytoskeleton. Furthermore, we discuss roles of vinculin in binding to and rearranging the actin cytoskeleton.  相似文献   

17.
S100A6 protein belongs to the A group of the S100 protein family of Ca2+-binding proteins. It is expressed in a limited number of cell types in adult normal tissues and in several tumor cell types. As an intracellular protein, S100A6 has been implicated in the regulation of several cellular functions, such as proliferation, apoptosis, the cytoskeleton dynamics, and the cellular response to different stress factors. S100A6 can be secreted/released by certain cell types which points to extracellular effects of the protein. RAGE (receptor for advanced glycation endproducts) and integrin β1 transduce some extracellular S100A6’s effects. Dosage of serum S100A6 might aid in diagnosis in oncology.  相似文献   

18.
Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e., secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane, and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules.  相似文献   

19.
DNA damage repair and transcription   总被引:4,自引:1,他引:3  
Double-strand breaks arise frequently in the course of endogenous - normal and pathological - cellular DNA metabolism or can result from exogenous agents such as ionizing radiation. It is generally accepted that these lesions represent one of the most severe types of DNA damage with respect to preservation of genomic integrity. Therefore, cells have evolved complex mechanisms that include cell-cycle arrest, activation of various genes, including those associated with DNA repair, and in certain cases induction of the apoptotic pathway to respond to double-strand breaks. In this review we discuss recent progress in our understanding of cellular responses to DNA double-strand breaks. In addition to an analysis of the current paradigms of detection, signaling and repair, insights into the significance of chromatin remodeling in the double-strand break-response pathways are provided.  相似文献   

20.
Integrins engage components of the extracellular matrix, and in collaboration with other receptors, regulate signaling cascades that impact cell behavior in part by modulating the cell’s cytoskeleton. Integrins have long been known to function together with the actin cytoskeleton to promote cell adhesion, migration, and invasion, and with the intermediate filament cytoskeleton to mediate the strong adhesion needed for the maintenance and integrity of epithelial tissues. Recent studies have shed light on the crosstalk between integrin and the microtubule cytoskeleton. Integrins promote microtubule nucleation, growth, and stabilization at the cell cortex, whereas microtubules regulate integrin activity and remodeling of adhesion sites. Integrin-dependent stabilization of microtubules at the cell cortex is critical to the establishment of apical–basal polarity required for the formation of epithelial tissues. During cell migration, integrin-dependent microtubule stabilization contributes to front–rear polarity, whereas microtubules promote the turnover of integrin-mediated adhesions. This review focuses on this interdependent relationship and its impact on cell behavior and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号