首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
设X为Banach空间,K为X的非空凸子集,且K+K K.设T:K→K为一致连续Φ-半压缩映射.设{αn}n∞=0和{βn}n∞=0为[0,1]中的2实数列,{un}n∞=0和{vn}n∞=0为K中序列并满足一定条件.如果{Tyn}有界,则带误差项的Ishikawa迭代序列{xn}n∞=0强收敛于方程T的唯一不动点.  相似文献   

2.
E是一实Banach空间,K是E的一非空闭凸子集.设f:K→K是一压缩映象,T1,T2…,TN∶K→K是具序列{kn}[1,+∞),lim kn=1 n→∞的有限簇一致L-Lipschitzian渐近伪压缩映象,且∩F(Ti)≠Φ from i=1 to N.设序列{xn}定义为xn+1=(1-αn-βn)xn+αnf(xx)+βnTrnnyn yn=(1-γn)xn+γnTrnnxn,n≥0其中{αn},{βn},{γn}[0,1],rn=n mod N.文章在一定条件下,用黏性逼近法证明了迭代序列{xn}强收敛于T1,T2,…,TN的公共不动点.该文结果推广和改进了一些文献的最新结果.  相似文献   

3.
Banach空间中关于一致Lipschitzian映象的一个新结果   总被引:1,自引:0,他引:1  
设E是一实Banach空间,K为E中的一非空闭凸子集,Ti:K→K,i=1,2,3为一致Lipschitzian连续映象.如果序列kn(∩)[1,∞),kn→1,{αn}、{βn}、{δn}∈[0,1],满足:(i)δn→1(n→∞);(ii)∑∞n=0αn=∞,∑∞n=0βn=∞;(iii)∑∞n=0α2n<∞,∑∞n=0αnβn<∞;(iv)∑∞n=0αn(kn-1)<∞,对x0∈K,让{xn}满足以下迭代序列xn+1=(1-αn)xn+αnT n1ynyn=(1-βn)xn+βnT n2znzn=(1-δn)xn+δnT n3xn,如果存在严格增的函数φ:[0,∞)→[0,∞),φ(0)=0,使得对(A)j(x+y)∈J(x+y),x∈K(i=1,2,3)有〈T nix-x*,j(x-x*)〉≤kn||x-x*||-(ψ)(||x-x*||),则{xn}收敛于x*.文章主要结果推广了张石生教授最近文献[1,8]以及文献[6-7]等的主要结果.  相似文献   

4.
设 (X ,J)是一个拓扑空间 ,K是X的一个紧子集 ,α ,β是X的一个开覆盖 ,T :X X连续 ,n是自然数 ,令N(K ,α) =min{ |γ| γ是α对K的子覆盖 } ,H(K ,α) =lnN(K ,α) ,T-1(α) ={T-1(A)A∈α} ,α∨ β ={A∩BA∈α ,B ∈ β} ,h (T ,α ,K) =limn→∞1nH(K ,∨n - 1i=0T-i(α) ) ,h(T ,K) =sup{h (T ,α ,K)α是X的覆盖 } ,则T的拓扑熵定义为 :h(T) =sup{h(T ,K)|K是X的紧子集 }  证明了所定义的连续变换的拓扑熵是拓扑不变量 ;有限个连续变换诱导的乘积空间上的连续变换的拓扑熵不小于各分量变换的拓扑熵 ;连续变换的多次复合的拓扑熵等于其拓扑熵的复合次数倍 .  相似文献   

5.
首先将序列{xn}的迭代定义为:x0∈K,xn+1=(1-α1n)xn+α1nTn1y1n,y1n=(1-α2n)xn+α2nTn2y2n,...,y(m-1)n=(1-αmn)xn+αmnTnmxn,其中{αin}满足一定的条件.若存在严格增加的函数:[0,∞)→[0,∞),且(0)=0,使得〈Tnix-x*,j(x-y)〉≤kn‖x-x*‖2-(‖x-x*‖),j(x-x*)∈J(x-x*),x∈K,i=1,2,...,m,那么{xn}强收敛到x*.x*是K中有限个一致L-李普希茨映象的公共不动点. K是Banach空间E的非空闭凸子集.  相似文献   

6.
设K是实Banach空间X中非空凸子集,T:K→K为Lipschitz φ-半压缩算子,设{αn},{bn},{cn},{α′n},{b′n},{c′n}为[0,1]中实数列且满足一定条件,{μn}n=0^∞和{νn}n=0^∞是K中两任意有界序列,则带误差项的Ishikawa型迭代序列{xn}n=0^∞强收敛于T的唯一不动点;一个相关结果处理含φ-拟强增生算子的方程解的带误差项的Ishikawa型迭代逼近。  相似文献   

7.
设 K是实 Banach空间 X中非空凸子集 ,T:K→K为 Lipschitzφ-半压缩算子 ,设 { an} ,{ bn} ,{ cn} ,{ a′n} ,{ b′n} ,{ c′n}为 [0 ,1 )中实数列且满足一定条件 ,{ μn}∞n=0 和 { νn}∞n=0 是 K中两任意有界序列 ,则带误差项的Ishikawa型迭代序列 { xn} ∞n=0 强收敛于 T的唯一不动点 ;一个相关结果处理含 φ-拟强增生算子的方程解的带误差项的 Ishikawa型迭代逼近 .  相似文献   

8.
有限簇非扩张非自映象的黏性逼近   总被引:2,自引:1,他引:1  
设E是一自反的Banach空间,具有E到E·的弱序列连续的正规对偶映象,K是E的非空闭凸子集而且是E的sunny非扩张收缩核.设f:K→K是一压缩映象,T1,T2,...,TN:K→E是一有限簇非扩张非自映象且∩Ni=1Fix(Ti)≠Ф.序列{xn}定义为xn+1=P(αnf(xn)+(1-αn)Tnyn),yn=P(βnxn+(1-βn)Tnxn), (A)n≥1,其中{αn},{βn}(∪)[0,1],P:E→K是一sunny非扩张保核收缩,Tn=Tn(modN).用黏性逼近方法证明了迭代序列{xn}强收敛于T1,T2,...,TN的公共不动点的充分必要条件,也推广和改进了一些文献的最新结果.  相似文献   

9.
Banach空间上广义渐近拟非扩张型映象不动点的逼近   总被引:7,自引:4,他引:3  
引入一类比渐近拟非扩张型映象更加广泛的广义渐近拟非扩张型映象,并给出具混合误差的Ishikawa迭代序列强收敛于广义渐近拟非扩张型映象的一个不动点的充要条件:设E是一Banach空间,T:E→E是广义渐近拟非扩张型映象,其渐近系数kn满足∑(kn-1)<∞;若T在F(T)中的点处一致连续,任取一点x0∈E,{xn}是由下式定义的具混合误差的Ishikawa迭代序列{xn 1=(1-αn)xn αnTnyn un, ,yn=(1-βn)xn βnTnxn vn,n≥0其中{αn}、{βn}是[0,1]中的两个数列且∞∑n=0αn收敛,{un}、{vn}是E中两个点列且{vn}有界同时∞En=0‖un‖收敛.则{xn}强收敛于T在E中一个不动点的充要条件是lim inf D(xn,F(T))=0.  相似文献   

10.
渐近非扩张映象的粘性逼近序列的强收敛定理   总被引:1,自引:0,他引:1  
假设E是具有一致Gateaux可微范数的实Banach空间,D是E的非空闭凸子集,f∶D→D是压缩映象,T∶D→D是渐近非扩张映象。设粘性逼近序列{xn}定义为xn 1=αnf(yn) (1-αn)Tnyn,yn=βnxn (1-βn)Tnxn(n≥0),其中αn∈[0,1],βn∈[0,1]。本文给出了{xn}强收敛于T的不动点的充要条件:若{αn}满足如下条件:limn→∞αn=0,∑∞n=0αn=∞,定义一簇压缩映象Sn∶D→D为Sn(z)=(1-dn)f(z) dnTnz,z∈D,其中dn=ktnn--αα,tn∈(α,1)(n=1,2,…),limn→∞tn=1且k2n-1≤(1-dn)2,n≥n0,设zn∈D是Sn的唯一不动点,即zn=Sn(zn)=(1-dn)f(zn) dnTnzn,n≥1,若limn→∞‖xn-Txn‖=0且{zn}强收敛于z*∈F(T),则{xn}强收敛于z*∈F(T)的充分必要条件是{yn}有界。本文的结果不仅是对Reich公开问题的解答,而且是对Reich[1-2]、Shioji和Takahashi[3]、张石生[4]相应结果的推广。  相似文献   

11.
设K是Hilbert空间E中非空闭凸集,Ti:K→K是具不动点集F(Ti)的严格伪压缩映像,且F=∩1≤i≤NF(Ti)≠φ,i=1,2,3,…,N.对x0∈K与{αn}(∈)[0,1],隐迭代格式{xn}定义为xn=αnxn-1+(1-αn)Tnxn,n≥1.这里Tn=TnmodN,如果{xn}收敛于Ti的公共不动点p∈F,i=1,2,3,...,N,且xn≠p,则对任意y∈F,有lim supn→+∞(y-p,xn-p/‖xn-p‖)≤0.称这一几何结果为逼近不动点的钝角原理.  相似文献   

12.
令E为实一致光滑Banach空间,A:D(A)=E→2E为m增生映射,z∈E为任意元,0∈R(A).序列{xn}D(A)定义为xn+1=xn-λn(un+θn(xn-z)+en),其中un∈Axn,n≥1,这里{λn}和{θn}为满足一定条件的正实数列,则xn→x*∈A-10.本质上将Chidume和Zegeye关于m增生映射零点的精确迭代格式推广为带误差项的形式.  相似文献   

13.
设D是赋范空间X的一子集,T:DX是一非扩张映射.给定D中序列{xn}和两个实数序列{tn}和{sn}满足: 0≤tn≤t<1和∑∞n=1tn=∞; 0≤sn≤1和∑∞n=1sn<∞; xn+1=tnT(snTxn+(1-sn)xn+vn)+(1-tn)xn+un,n=1,2,3,…,其中{un}和{vn}是两个在X中的可合序列,且limn→∞t-1n‖un‖=0.证明了若{xn}有界,则limn→∞‖Txn-xn‖=0.并给出了保证{xn}弱和强收敛到T的不动点时,关于D,X和T的条件.  相似文献   

14.
文献[5]提出如下猜想:设n维Euclid空间En(n≥3)中n维单形∑A=conv{A0,A1,…,An}诸顶点Ai所对n-1维界面fi的内心为Ii(i=0,1,…,n),单形∑A与其内心单形∑I=conv{I0,I1,…,In}的有向体积分别为Vn(A)和Vn(I),则|Vn(I)|≤1nn|Vn(A)|等式成立当且仅当∑A为正则单形 本文利用垂心坐标与行列式计算证明了此猜想,同时放宽了猜想中所述不等式成立的充要条件  相似文献   

15.
{εt;t∈Z}是均值为零、 二阶矩有限的B值m相依随机元列, {aj; j∈Z}是一实数序列, 定义移动平均过程Xt利用Beveridge Nelson分解及{εt;t≥ 1}的弱收敛定理, 给出{Xt;t≥1} 满足随机指标中心极限定理的充分条件.  相似文献   

16.
欧氏完备的α相对极值超曲面   总被引:1,自引:1,他引:0  
设x:M→Rn+1 是凸域Ω(∩)Rn 上的严格凸函数 xn+1= f(x1,...,xn)定义的一个局部强凸超曲面. 如果 f 是下面方程的解,则称 M为α相对极值超曲面:Δρ=(2-nα)/(2)(‖Δρ‖2)/(ρ),ρ:=det((e)2f)/((e)xi(e)xj)-(1)/(n+2).2007年,贾和李证明了存在一个仅依赖于维数n 的正常数K(n),如果|α|≥ K(n), 那么欧氏完备的α相对极值超曲面是椭圆抛物面. 本文中我们利用Calabi 度量给出了这个定理的一个简单证明.  相似文献   

17.
设{Xn, n≥1}为一严平稳φ混合随机变量序列, EX=0,V2n为一实数阵列, 利用随机变量阵列的弱收敛定理, 在较一般的条件下, 证明了自正则加权和{Sn/Vn, n≥1}的中心极限定理, 改进并推广了已有混合序列自正则化中心极限定理的相关结果.  相似文献   

18.
设E是实一致光滑Banach空间,T:E→E是m-增生算子,且对任意x,y∈E,有∥Tx-Ty∥≤L(1 ∥x-y∥),其中L≥1。假设{un}n=0^∞,{vn}n=0^∞为E中序列,{αn}n=0^∞,{βn}n=0^∞为[0,1]中实数列且满足某些条件,则Ishikawa迭代序列{xn}n=0^∞强收敛于方程x Tx=f的唯一解。  相似文献   

19.
给出两数列 { xn}、{ yn}满足 yn=axn+bxn+1的收敛性之间的关系 ,并推广到 yn=axn+bxn+p(p∈ N)的收敛性关系  相似文献   

20.
设Rm 是一个正实数列,满足条件limm →∞Rm +1Rm = ∞,φm 是一个实数列,满足0 ≤φm <2π,η(0 < η< π) 和S( S> 1) 是两个常数,设D = U∞m = 1 Dm ,其中 Dm = Rm ≤| z| ≤SRm \z:φm - η< argz < φm + η,我们将证明,对具有一个亏值,下级为μ(μ< ∞) 级为λ(0 < λ<∞) 的亚纯函数f,Borel 定理在C\ D内成立。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号