首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-affinity binding of staphylococcal enterotoxins A and B to HLA-DR   总被引:37,自引:0,他引:37  
J D Fraser 《Nature》1989,339(6221):221-223
Staphylococcal enterotoxins A-E (refs 1-3), toxic shock toxin (TST-1) (ref. 1), a product of Mycoplasma arthritidis and the Mls antigens provoke dramatic T-cell responses. All are extremely potent polyclonal mitogens stimulating a large proportion of both murine and human CD4+ and CD8+T cells although activity is tightly restricted by major histocompatibility complex (MHC) class II antigens. The murine T-cell response to staphylococcal enterotoxin B (SEB) has recently been shown to involve only those T cells expressing T-cell receptor V beta 3, 8.1, 8.2 and 8.3 domains, a situation which closely mimics the response to Mls antigens. This paper examines the initial events in SEA and SEB T-cell activation and shows that MHC restriction results from a direct high affinity binding by intact SEA and SEB to the same site on MHC class II HLA-DR antigens.  相似文献   

2.
C J Rust  F Verreck  H Vietor  F Koning 《Nature》1990,346(6284):572-574
T cells bearing the alpha beta receptor can specifically react with target cells coated with staphylococcal enterotoxin and expressing major histocompatibility complex class II molecules; these responses depend on which variable region (V) of the receptor's beta-subunit is used. We have now examined whether a similar situation exists for human T cells bearing the gamma delta receptor. We found that reactivity to staphylococcal enterotoxin A is strictly dependent on the presence of the V gamma 9 variable region in the gamma delta T-cell receptor (TCR). These cytotoxic responses required the expression of HLA class II molecules by the target cell and could be inhibited by anti-gamma delta TCR and by anti-HLA-class-II monoclonal antibodies. In contrast to alpha beta TCR+ cell clones, no proliferative response of V gamma 9+ T-cell clones towards stimulator cells coated with enterotoxin A was observed in vitro. These results indicate that the gamma delta TCR repertoire might be influenced by enterotoxin A produced during staphylococcal infections in vivo. This could provide a molecular basis for the observation that V gamma 9+ T cells form the large majority of peripheral gamma delta TCR+ cells but only a small proportion of thymic gamma delta TCR+ cells.  相似文献   

3.
Y W Choi  A Herman  D DiGiusto  T Wade  P Marrack  J Kappler 《Nature》1990,346(6283):471-473
The alpha beta T-cell antigen receptor (TCR) recognizes antigenic peptides in the context of self major histocompatibility complex (MHC) molecules. The specificity of recognition of MHC plus antigen is generally determined by a combination of the variable elements of alpha- and beta-chains of the TCR. Several types of antigen, however, have been identified that, when bound to MHC molecules, stimulate T cells bearing particular variable-region beta-chain (V beta) elements irrespective of the other variable components of the TCR. These have been termed 'superantigens', and here we are concerned with one type of superantigen, the toxins produced by Staphylococcus aureus. T cells have been found that bear closely related members of the same V beta family but respond differently to S. aureus toxins; in particular, cells bearing the human V beta 13.2 element respond to toxin SEC2, whereas cells bearing human V beta 13.1 do not. We have now defined the residues of the V beta element responsible for this difference, and find that they reside in a region thought to lie on the side of the TCR molecule, away from the conventional antigen/MHC-binding site. The evolutionary conservation of this site may be due to its having an important role in some function of the TCR other than the binding of conventional antigen plus MHC.  相似文献   

4.
A Winoto  J L Urban  N C Lan  J Goverman  L Hood  D Hansburg 《Nature》1986,324(6098):679-682
The T-cell receptor is a cell surface heterodimer consisting of an alpha and a beta chain that binds foreign antigen in the context of a cell surface molecule encoded by the major histocompatibility complex (MHC), thus restricting the T-cell response to the surface of antigen presenting cells. The variable (V) domain of the receptor binds antigen and MHC molecules and is composed of distinct regions encoded by separate gene elements--variable (V alpha and V beta), diversity (D beta) and joining (J alpha and J beta)--rearranged and joined during T-cell differentiation to generate contiguous V alpha and V beta genes. T-helper cells, which facilitate T and B cell responses, bind antigen in the context of a class II MHC molecule. The helper T-cell response to cytochrome c in mice is a well-defined model for studying the T-cell response to restricted antigen and MHC determinants. Only mice expressing certain class II molecules can respond to this antigen (Ek alpha Ek beta, Ek alpha Eb beta, Ev alpha Ev beta and Ek alpha Es beta). Most T cells appear to recognize the C-terminal peptide of cytochrome c (residues 81-104 in pigeon cytochrome c). We have raised helper T cells to pigeon cytochrome c or its C-terminal peptide analogues in four different MHC congenic strains of mice encoding each of the four responding class II molecules. We have isolated and sequenced seven V alpha genes and six V beta genes and analysed seven additional helper T cells by Northern blot to compare the structure of the V alpha and V beta gene segments with their antigen and MHC specificities. We have added five examples taken from the literature. These data show that a single V alpha gene segment is responsible for a large part of the response of mice to cytochrome c but there is no simple correlation of MHC restriction with gene segment use.  相似文献   

5.
Crystal structure of staphylococcal enterotoxin B, a superantigen.   总被引:39,自引:0,他引:39  
S Swaminathan  W Furey  J Pletcher  M Sax 《Nature》1992,359(6398):801-806
The three-dimensional structure of staphylococcal enterotoxin B, which is both a toxin and a super-antigen, has been determined to a resolution of 2.5 A. The unusual main-chain fold containing two domains may represent a general motif adopted by all staphylococcal enterotoxins. The T-cell receptor binding site encompasses a shallow cavity formed by both domains. The MHCII molecule binds to an adjacent site. Another cavity with possible biological activity was also identified.  相似文献   

6.
P Kisielow  H S Teh  H Blüthmann  H von Boehmer 《Nature》1988,335(6192):730-733
Thymus-derived lymphocytes (T cells) recognize antigen in the context of class I or class II molecules encoded by the major histocompatibility complex (MHC) by virtue of the heterodimeric alpha beta T-cell receptor (TCR). CD4 and CD8 molecules expressed on the surface of T cells bind to nonpolymorphic portions of class II and class I MHC molecules and assist the TCR in binding and possibly in signalling. The analysis of T-cell development in TCR transgenic mice has shown that the CD4/CD8 phenotype of T cells is determined by the interaction of the alpha beta TCR expressed on immature CD4+8+ thymocytes with polymorphic domains of thymic MHC molecules in the absence of nominal antigen. Here we provide direct evidence that positive selection of antigen-specific, class I MHC-restricted CD4-8+ T cells in the thymus requires the specific interaction of the alpha beta TCR with the restricting class I MHC molecule.  相似文献   

7.
R K?nig  L Y Huang  R N Germain 《Nature》1992,356(6372):796-798
Interactions between major histocompatibility complex (MHC) molecules and the CD4 or CD8 coreceptors have a major role in intrathymic T-cell selection. On mature T cells, each of these two glycoproteins is associated with a class-specific bias in MHC molecule recognition by the T-cell receptor. CD4+ T cells respond to antigen in association with MHC class II molecules and CD8+ T cells respond to antigen in association with MHC class I molecules. Physical interaction between the CD4/MHC class II molecules and CD8/MHC class I molecules has been demonstrated by cell adhesion assay, and a binding site for CD8 on class I has been identified. Here we demonstrate that a region of the MHC class II beta-chain beta 2 domain, structurally analogous to the CD8-binding loop in the MHC class I alpha 3 domain, is critical for function with both mouse and human CD4.  相似文献   

8.
M K Newell  L J Haughn  C R Maroun  M H Julius 《Nature》1990,347(6290):286-289
Effector T cells are restricted to recognizing antigens associated with major histocompatibility complex (MHC) molecules. Specific recognition is mediated by the alpha beta heterodimer of the T-cell receptor (TCR)/CD3 complex, although other membrane components are involved in T-cell antigen recognition and functions. There has been much controversy in this regard over the part played by the CD4 glycoprotein. It is known that expression of CD4 correlates closely with the cell's ability to recognize antigens bound to class II MHC molecules and that CD4 can bind to class II molecules. Also monoclonal antibodies to CD4 can modify signals generated through the TCR/CD3 complex. It has therefore been proposed that CD4 binds to class II molecules, coaggregates with the TCR-CD3 complex and aids the activation of T cells. But given that TCR can itself impart restriction on the cell, it remains unclear whether the contribution of CD4-derived signals to those generated through the TCR alpha beta-CD3 complex is central to this activation. Here we report that when preceded by ligation of CD4, signalling through TCR alpha beta results in T cell unresponsiveness due to the induction of activation dependent cell death by apoptosis. These results imply that CD4 is critically involved in determining the outcome of signals generated through TCR, and could explain why the induction of effector T cells needs to be MHC-restricted.  相似文献   

9.
R L Modlin  M B Brenner  M S Krangel  A D Duby  B R Bloom 《Nature》1987,329(6139):541-545
Cells which can suppress the immune response to an antigen (TS cells) appear to be essential for regulation of the immune system. But the characterization of the TS lineage has not been extensive and many are sceptical of studies using uncloned or hybrid T-cell lines. The nature of the antigen receptor on these cells is unclear. T cells of the helper or cytotoxic lineages appear to recognize their targets using the T-cell receptor (TCR) alpha beta-CD3 complex. TCR beta-gene rearrangements are also found in some murine and human suppressor cell lines but others have been shown not to rearrange or express the beta-chain or alpha-chain genes. We previously established TS clones derived from lepromatous leprosy patients which carry the CD8 antigen and recognize antigen in the context of the major histocompatibility complex (MHC) class II molecules in vitro. We here report the characterization of additional MHC-restricted TS clones which rearrange TCR beta genes, express messenger RNA for the alpha and beta chains of the TCR and express clonally unique CD3-associated TCR alpha beta structures on their cell surface but do not express the gamma chain of the gamma delta TCR on the cell surface. We conclude that antigen recognition by at least some human CD8+ suppressor cells is likely to be mediated by TCR alpha beta heterodimers.  相似文献   

10.
D Gay  P Maddon  R Sekaly  M A Talle  M Godfrey  E Long  G Goldstein  L Chess  R Axel  J Kappler 《Nature》1987,328(6131):626-629
Mature T cells segregate phenotypically into one of two classes: those that express the surface glycoprotein CD4, and those that express the glycoprotein CD8. The CD4 molecule is expressed primarily on helper T cells whereas CD8 is found on cytotoxic and suppressor cells. A more stringent association exists, however, between these T-cell subsets and the major histocompatibility complex (MHC) gene products recognized by their T-cell receptors (TCRs). CD8+ lymphocytes interact with targets expressing class I MHC gene products, whereas CD4+ cells interact with class II MHC-bearing targets. To explain this association, it has been proposed that these 'accessory' molecules bind to monomorphic regions of the MHC proteins on the target cell, CD4 to class II and CD8 to class I products. This binding could hold the T cell and its target together, thus improving the probability of the formation of the trimolecular antigen: MHC: TCR complex. Because the TCR on CD4+ cells binds antigen in association with class II MHC, it has been difficult to design experiments to detect the association of CD4 with a class II molecule. To address this issue, we devised a xenogeneic system in which human CD4 complementary DNA was transfected into the murine CD4-, CD8- T-cell hybridoma 3DT-52.5.8, the TCR of which recognizes the murine class I molecule H-2Dd. The murine H-2Dd-bearing target cell line, P815, was cotransfected with human class II HLA-DR alpha, beta and invariant chain cDNAs. Co-culture of the parental T-cell and P815 lines, or of one parental and one transfected line resulted in a low baseline response. In contrast, a substantial increase in response was observed when CD4+ 3DT-52.5.8 cells were co-cultured with HLA-DR+ P815 cells. This result strongly indicates that CD4:HLA-DR binding occurs in this system and that this interaction augments T-cell activation.  相似文献   

11.
In B cells the loci encoding immunoglobulin chains usually show allelic exclusion; a given B cell transcribes and translates only one productively rearranged allele of the heavy and light chain loci. This ensures that each B cell expresses only one antigen receptor. The loci encoding T-cell receptor (TCR) alpha- and beta-genes may behave similarly. We have previously reported that the expression of a transgenic TCR beta-chain prevents functional and nonfunctional V beta rearrangements in the endogenous beta-chain loci but not D beta J beta rearrangements. We have also been unable to detect the expression of the TCR gamma-chain locus in thymocytes of these mice (unpublished observations). To study the mechanisms involved in forming a mature T-cell repertoire further, we have constructed mice expressing alpha- and beta-TCR transgenes derived from a cytotoxic T-cell clone that is specific for the male antigen H-Y in the context of H-2Db MHC molecules. Here we show that in these mice rearrangement of endogenous alpha-chain loci is also suppressed, although to a lesser extent than rearrangement of beta-chain loci. In addition, in male alpha beta TCR transgenic mice we observed T-cell clones which had deleted both transgenic alpha- and beta-chain genes and expressed endogenous alpha- and beta-chain TCR genes. These cells are presumably derived from rare thymocytes that leave the male thymus because their TCR no longer recognizes self antigen. The vast majority of CD4+8+ nonmature thymocytes expressing alpha- and beta-transgenes are deleted in the male thymus.  相似文献   

12.
Thymic selection process induced by hybrid antibodies   总被引:2,自引:0,他引:2  
F Zepp  U D Staerz 《Nature》1988,336(6198):473-475
Thymus-derived (T) lymphocytes using the alpha beta T-cell antigen receptor (TCR) recognize fragmented antigen in conjunction with surface molecules encoded by genes of the major histocompatibility complex (MHC). Peripheral T lymphocytes preferentially see antigen presented by self rather than by foreign MHC molecules, and autoreactive T lymphocytes are deleted. Thus, the peripheral T-lymphocyte repertoire is skewed towards recognition of antigen in the context of self-MHC and towards tolerance to self-antigens. During T-lymphocyte development in the thymus, this repertoire is formed by the interaction of TCR with MHC molecules resulting in positive and negative selection phenomena. Hybrid antibodies (HAbs) that carry binding sites to the TCR and to a surface marker on another cell can engage all T lymphocytes regardless of their specificity. It should be possible to mimic selection processes in normal animals with HAb that specifically link members of a TCR family to MHC molecules on the thymic stroma. We have probed T-lymphocyte development with HAbs linking V beta 8-positive TCR to either class I or class II MHC products in thymic organ culture. Thymocytes exposed to either HAb in an early stage of maturation respond with a significant increase in the frequency of V beta 8-carrying cells. At a later stage of development V beta 8-positive thymocytes are depleted. These results illustrate the succession of positive and negative selection in the developing thymus of normal mice.  相似文献   

13.
H R MacDonald  H Hengartner  T Pedrazzini 《Nature》1988,335(6186):174-176
T-cell differentiation in the thymus involves the coordinate expression of genes encoding the alpha and beta chains of the major histocompatibility complex-restricted heterodimeric antigen receptor (TCR) complex, as well as other functionally important molecules such as CD4 and CD8. The repertoire of TCR expressed by T cells is generally thought to be influenced by positive and/or negative selection events occurring when TCRs on developing T cells interact with self-antigens and major histocompatibility complex components. Using a model system in which specific antigen-reactive cells can be monitored by virtue of their preferential expression of certain TCR beta-chain variable (V beta) domains, it has been shown that self-reactive T cells are clonally deleted during development. We report here that clonal deletion of V+ beta 6 cells in Mlsa mice can be prevented by in vivo neonatal administration of monoclonal antibodies directed against CD4. Furthermore, as anti-CD4 monoclonal antibody treatment resulted in the reappearance of V+ beta 6 cells in the mature CD8+ T-cell subset, it is likely that clonal deletion acts on the CD4+CD8+ thymocyte subset and that this subset is an intermediate stage in the differentiation pathway of both CD4+ and CD8+ T-cell lineages.  相似文献   

14.
Human cluster-of-differentiation 1 (CD1) is a family of cell surface glycoproteins of unknown function expressed on immature thymocytes, epidermal Langerhans cells and a subset of B lymphocytes. Three homologous proteins, CD1a, b and c, have been defined serologically, and the CD1 gene locus on human chromosome 1 contains five potential CD1 genes. Analysis of the predicted amino-acid sequences of CD1 molecules reveals a low but significant level of homology to major histocompatibility complex (MHC) class I and class II molecules, and, like MHC class I molecules, CD1 molecules are associated non-covalently with beta 2-microglobulin. These structural similarities to known antigen-presenting molecules, together with the expression of CD1 on cells capable of antigen presentation, suggest a role for CD1 molecules in antigen recognition by T cells. Here we demonstrate the specific recognition of CD1a by a CD4-CD8- alpha beta T-cell receptor (TCR) expressing cytolytic T lymphocyte (CTL) line and the specific recognition of CD1c by a CD4-CD8- gamma delta TCR CTL line. The interaction of CD1-specific CTLs with CD1+ target cells appeared to involve the CD3-TCR complex, and did not show evidence of MHC restriction. These results suggest that for a subset of T cells, CD1 molecules serve a function analogous to that of MHC class I and II molecules.  相似文献   

15.
D R Karp  C L Teletski  P Scholl  R Geha  E O Long 《Nature》1990,346(6283):474-476
Several exoproteins from the bacterium Staphylococcus aureus are highly potent polyclonal activators of T cells in the presence of cells bearing class II antigens of the major histocompatibility complex (MHC). These toxins, including the toxic shock syndrome toxin (TSST-1), act at nanomolar concentrations, bind directly to class II molecules, and do not require the processing typical of nominal antigen. Each toxin is capable of stimulating a subpopulation of peripheral T lymphocytes bearing particular V beta sequences as part of their alpha beta T-cell receptors. It is not known how these so-called 'superantigens' bind to class II and how this binding stimulates T cells. In this study, the different affinities of TSST-1 for human class II molecules DR and DP were exploited to define the region of a class II molecule necessary for high-affinity binding. Using chimaeric alpha- and beta-chains of DR and DP expressed at the surface of transfected murine fibroblasts and a binding assay with TSST-1, it was shown that the alpha 1 domain of DR is essential for high-affinity binding, and further that TSST-1 binding did not prevent subsequent binding of a DR-restricted antigenic peptide. This is compatible with a model of superantigen making external contacts with both class II and T cell receptor, and suggests that the V beta portion of the T-cell receptor interacts with the nonpolymorphic alpha-chain of DR.  相似文献   

16.
Positive selection of CD4-CD8+ T cells in the thymus of normal mice   总被引:3,自引:0,他引:3  
The diversification of the repertoire of T-cell antigen receptor (TCR) specificities is influenced by at least two selection processes which occur in the thymus. One of these, termed 'negative selection', is required to install a state of tolerance to self-antigens in the T-cell repertoire and is often achieved by clonal deletion. The second type of selection operating in the thymus results in preferential differentiation of T cells that have restriction specificity for thymic major histocompatibility complex glycoproteins, but the mechanisms leading to this selective process are not yet clear. One model used to describe this 'positive selection' proposes that only those T cells with sufficient avidity for the MHC glycoproteins expressed in the thymus are allowed to acquire functional competence. Here we directly investigate the generation of TCR specificities by following the fate of developing V beta 17+ CD4-CD8+ T cells under conditions where one of the main class I-MHC molecules, either H-2K or H-2D, was specifically blocked by in vitro monoclonal antibody treatment. The results show that development of V beta 17+ CD4-CD8+ T cells in the SJL H-2s mouse strain is selectively abrogated by blocking class I-Ks molecules but is unaffected by blocking class I-Ds molecules. These data directly demonstrate that generation of CD4-CD8+ T cells expressing a particular TCR V beta segment can be correlated with the expression of a particular class I-MHC molecule, thereby providing evidence for positive selection.  相似文献   

17.
Infection breaks T-cell tolerance.   总被引:12,自引:0,他引:12  
M R?cken  J F Urban  E M Shevach 《Nature》1992,359(6390):79-82
Clonal deletion or clonal anergy establish tolerance in T cells that bear potentially autoreactive antigen receptors. Here we report that concomitant infection with the nematode Nippostrongylus brasiliensis breaks an established T-cell tolerance induced by injection of mice with Staphylococcus enterotoxin B (SEB). CD4+ T cells from SEB-tolerant mice did not produce either interleukin-2 or interleukin-4 when challenged in vitro with SEB. N. brasiliensis infection of SEB-primed animals resulted in a normal expansion of SEB-tolerant CD4+V beta 8+ T cells in vivo as well as an equivalent increase of SEB-reactive, interleukin-4-producing CD4+V beta 8+ T cells both in SEB-tolerant and in normal animals. Thus, infection with N. brasiliensis circumvented the tolerance established with SEB. Activation of anergic, potentially autoreactive CD4+ T cells by infectious agents seems to be a major pathway for the initiation of autoimmune diseases. Our results suggest that infectious agents may break tolerance in potentially autoreactive CD4+ T cells by activation of alternative reaction pathways.  相似文献   

18.
HLA class II molecules are a highly polymorphic family of dimeric cell-surface proteins primarily involved in regulating T-cell responses to extrinsic antigens. To define regions of class II molecules involved in T-cell recognition, we have now compared sequences of three HLA DR beta cDNA clones obtained from cells that all express the same serologically defined determinants but differ in terms of T-cell-recognized specificities. The comparisons indicate that very few (one to four) nucleotides differ between what are almost certainly alleles of the DR beta 1 locus. All differences were in the first domain of the molecule and all localized to a region from amino acids 71-86. Because all differences were found only in this region of the molecule, and because DR alpha-chains seem to be relatively non-polymorphic, these positions in the DR beta-chain must have a major role in influencing T-cell recognition of the DR molecule.  相似文献   

19.
Positive selection of CD4+ thymocytes controlled by MHC class II gene products   总被引:20,自引:0,他引:20  
The mature T-cell antigen receptor repertoire is characterized by lack of reactivity to self-components as well as by preferential reactivity to foreign antigens in the context of polymorphic self-proteins encoded within the major histocompatibility complex. Whereas the former characteristic (referred to as negative selection or tolerance) is associated with intrathymic deletion of T cells expressing T-cell antigen receptor beta-chain variable (V beta) domains, which confer a preferential reactivity to self antigens, the existence of the latter (referred to as positive selection or MHC restriction) has so far only been inferred indirectly from functional studies. We show here that intrathymic deletion of V+beta 6 T cells (reactive with a self-antigen encoded by the Mlsa locus) is controlled by polymorphic MHC class II determinants. Furthermore, in mice lacking expression of Mlsa, the same class II MHC loci control the frequency of occurrence of V+beta 6 cells among mature CD4+ T lymphocytes. These data are direct evidence for positive selection by MHC determinants in the thymus in unmanipulated animals.  相似文献   

20.
R H Seong  J W Chamberlain  J R Parnes 《Nature》1992,356(6371):718-720
Mature T cells express either CD4 or CD8 on their surface. Most helper T cells express CD4, which binds to class II major histocompatibility complex (MHC) proteins, and most cytotoxic T cells express CD8, which binds to class I MHC proteins. In the thymus, mature CD4+CD8- and CD4-CD8+ T cells expressing alpha beta T-cell antigen receptors (TCR) develop from immature thymocytes through CD4+CD8+ alpha beta TCR+ intermediates. Experiments using mice transgenic for alpha beta TCR suggest that the specificity of the TCR determines the CD4/CD8 phenotype of mature T cells. These results, however, do not indicate how a T cell differentiates into the CD4 or CD8 lineage. Here we show that the CD4 transmembrane region and/or cytoplasmic tail mediates the delivery of a specific signal that directs differentiation of T cells to a CD4 lineage. We generated transgenic mice expressing a hybrid molecule composed of the CD8 alpha extracellular domains linked to the CD4 transmembrane region and cytoplasmic tail. We predicted that this hybrid molecule would bind to class I MHC proteins through the extracellular domains but deliver the intracellular signals characteristic of CD4. By crossing our transgenic mice with mice expressing a transgenic alpha beta TCR specific for a particular antigen plus class I MHC protein, we were able to express the hybrid molecule in developing thymocytes expressing the class I MHC-restricted TCR. Our results show that the signal transduced by the hybrid molecule results in the differentiation of immature thymocytes expressing a class I-restricted TCR into mature T cells expressing CD4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号