首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Moussion C  Girard JP 《Nature》2011,479(7374):542-546
While patrolling the body in search of foreign antigens, naive lymphocytes continuously circulate from the blood, through the lymph nodes, into the lymphatic vessels and back to the blood. This process, called lymphocyte recirculation, provides the body with effective immune surveillance for foreign invaders and for alterations to the body's own cells. However, the mechanisms that regulate lymphocyte recirculation during homeostasis remain incompletely characterized. Here we show that dendritic cells (DCs), which are well known for their role in antigen presentation to T lymphocytes, control the entry of naive lymphocytes to lymph nodes by modulating the phenotype of high endothelial venules (HEVs), which are blood vessels specialized in lymphocyte recruitment. We found that in vivo depletion of CD11c(+) DCs in adult mice over a 1-week period induces a reduction in the size and cellularity of the peripheral and mucosal lymph nodes. In the absence of DCs, the mature adult HEV phenotype reverts to an immature neonatal phenotype, and HEV-mediated lymphocyte recruitment to lymph nodes is inhibited. Co-culture experiments showed that the effect of DCs on HEV endothelial cells is direct and requires lymphotoxin-β-receptor-dependent signalling. DCs express lymphotoxin, and DC-derived lymphotoxin is important for lymphocyte homing to lymph nodes in vivo. Together, our results reveal a previously unsuspected role for DCs in the regulation of lymphocyte recirculation during immune surveillance.  相似文献   

2.
The nanoparticles (NPs) from polyvinyl butyrate (PVBu) which can work as an orally applicable donor of butyrate for intestine were prepared. Immunotolerance inducing molecules such as vitamin D3 and all-trans retinoic acid (ATRA) were incorporated into PVBu NPs. The alteration in populations and numbers of DC103+ dendritic cells (DC) and regulatory T (Treg) cells in intestinal immune tissues were examined after oral administration of NPs. It was found that NPs reduced the population of CD103+ DC and Treg cells in Peyer’s patched in lower part of the intestine and inversely increased the population of CD103+ DC in mesenteric lymph node (MLN), while the population of Treg cells in MLN was unchanged. These observations indicate that NPs may enhance the immunotolerance at MLN and lamina propria toward luminal antigens, indicating the promising features of PVBu NPs as therapeutics of allergy and autoimmune diseases.  相似文献   

3.
Watanabe N  Wang YH  Lee HK  Ito T  Wang YH  Cao W  Liu YJ 《Nature》2005,436(7054):1181-1185
Hassall's corpuscles-first described in the human thymus over 150 years ago-are groups of epithelial cells within the thymic medulla. The physical nature of these structures differs between mammalian species. Although Hassall's corpuscles have been proposed to act in both the removal of apoptotic thymocytes and the maturation of developing thymocytes within the thymus, the function of Hassall's corpuscles has remained an enigma. Here we report that human Hassall's corpuscles express thymic stromal lymphopoietin (TSLP). Human TSLP activates thymic CD11c-positive dendritic cells to express high levels of CD80 and CD86. These TSLP-conditioned dendritic cells are then able to induce the proliferation and differentiation of CD4(+)CD8(-)CD25(-) thymic T cells into CD4(+)CD25(+)FOXP3(+) (forkhead box P3) regulatory T cells. This induction depends on peptide-major histocompatibility complex class II interactions, and the presence of CD80 and CD86, as well as interleukin 2. Immunohistochemistry studies reveal that CD25(+)CTLA4(+) (cytotoxic T-lymphocyte-associated protein 4) regulatory T cells associate in the thymic medulla with activated or mature dendritic cells and TSLP-expressing Hassall's corpuscles. These findings suggest that Hassall's corpuscles have a critical role in dendritic-cell-mediated secondary positive selection of medium-to-high affinity self-reactive T cells, leading to the generation of CD4(+)CD25(+) regulatory T cells within the thymus.  相似文献   

4.
5.
Shi Y  Evans JE  Rock KL 《Nature》2003,425(6957):516-521
In infections, microbial components provide signals that alert the immune system to danger and promote the generation of immunity. In the absence of such signals, there is often no immune response or tolerance may develop. This has led to the concept that the immune system responds only to antigens perceived to be associated with a dangerous situation such as infection. Danger signals are thought to act by stimulating dendritic cells to mature so that they can present foreign antigens and stimulate T lymphocytes. Dying mammalian cells have also been found to release danger signals of unknown identity. Here we show that uric acid is a principal endogenous danger signal released from injured cells. Uric acid stimulates dendritic cell maturation and, when co-injected with antigen in vivo, significantly enhances the generation of responses from CD8+ T cells. Eliminating uric acid in vivo inhibits the immune response to antigens associated with injured cells, but not to antigens presented by activated dendritic cells. Our findings provide a molecular link between cell injury and immunity and have important implications for vaccines, autoimmunity and inflammation.  相似文献   

6.
Skewed maturation of memory HIV-specific CD8 T lymphocytes   总被引:89,自引:0,他引:89  
Understanding the lineage differentiation of memory T cells is a central question in immunology. We investigated this issue by analysing the expression of the chemokine receptor CCR7, which defines distinct subsets of naive and memory T lymphocytes with different homing and effector capacities and antiviral immune responses to HIV and cytomegalovirus. Ex vivo analysis of the expression of CD45RA and CCR7 antigens, together with in vitro analysis of the cell-division capacity of different memory CD8+ T-cell populations, identified four subsets of HIV- and CMV-specific CD8+ T lymphocytes, and indicated the following lineage differentiation pattern: CD45RA+ CCR7+ --> CD45RA- CCR7+ --> CD45RA- CCR7- --> CD45RA+ CCR7-. Here we demonstrate through analysis of cell division (predominantly restricted to the CCR7+ CD8+ T-cell subsets) that the differentiation of antigen-specific CD8+ T cells is a two-step process characterized initially by a phase of proliferation largely restricted to the CCR7+ CD8+ cell subsets, followed by a phase of functional maturation encompassing the CCR7- CD8+ cell subsets. The distribution of these populations in HIV- and CMV-specific CD8+ T cells showed that the HIV-specific cell pool was predominantly (70%) composed of pre-terminally differentiated CD45RA- CCR7- cells, whereas the CMV-specific cell pool consisted mainly (50%) of the terminally differentiated CD45RA+ CCR7- cells. These results demonstrate a skewed maturation of HIV-specific memory CD8+ T cells during HIV infection.  相似文献   

7.
CD8+ T cells have a crucial role in resistance to pathogens and can kill malignant cells; however, some critical functions of these lymphocytes depend on helper activity provided by a distinct population of CD4+ T cells. Cooperation between these lymphocyte subsets involves recognition of antigens co-presented by the same dendritic cell, but the frequencies of such antigen-bearing cells early in an infection and of the relevant naive T cells are both low. This suggests that an active mechanism facilitates the necessary cell-cell associations. Here we demonstrate that after immunization but before antigen recognition, naive CD8+ T cells in immunogen-draining lymph nodes upregulate the chemokine receptor CCR5, permitting these cells to be attracted to sites of antigen-specific dendritic cell-CD4+ T cell interaction where the cognate chemokines CCL3 and CCL4 (also known as MIP-1alpha and MIP-1beta) are produced. Interference with this actively guided recruitment markedly reduces the ability of CD4+ T cells to promote memory CD8+ T-cell generation, indicating that an orchestrated series of differentiation events drives nonrandom cell-cell interactions within lymph nodes, optimizing CD8+ T-cell immune responses involving the few antigen-specific precursors present in the naive repertoire.  相似文献   

8.
Infections localized to peripheral tissues such as the skin result in the priming of T-cell responses that act to control pathogens. Activated T cells undergo migrational imprinting within the draining lymph nodes, resulting in memory T cells that provide local and systemic protection. Combinations of migrating and resident memory T cells have been implicated in long-term peripheral immunity, especially at the surfaces that form pathogen entry points into the body. However, T-cell immunity consists of separate CD4(+) helper T cells and CD8(+) killer T cells, with distinct effector and memory programming requirements. Whether these subsets also differ in their ability to form a migrating pool involved in peripheral immunosurveillance or a separate resident population responsible for local infection control has not been explored. Here, using mice, we show key differences in the migration and tissue localization of memory CD4(+) and CD8(+) T cells following infection of the skin by herpes simplex virus. On resolution of infection, the skin contained two distinct virus-specific memory subsets; a slow-moving population of sequestered CD8(+) T cells that were resident in the epidermis and confined largely to the original site of infection, and a dynamic population of CD4(+) T cells that trafficked rapidly through the dermis as part of a wider recirculation pattern. Unique homing-molecule expression by recirculating CD4(+) T effector-memory cells mirrored their preferential skin-migratory capacity. Overall, these results identify a complexity in memory T-cell migration, illuminating previously unappreciated differences between the CD4(+) and CD8(+) subsets.  相似文献   

9.
10.
Interconversion of CD45R subsets of CD4 T cells in vivo   总被引:41,自引:0,他引:41  
E B Bell  S M Sparshott 《Nature》1990,348(6297):163-166
T lymphocytes express multiple forms of the leukocyte common antigen CD45, transcribed by alternative usage of leukocyte-common antigen exons 4-6. Species-specific monoclonal antibodies against restricted epitopes (CD45R) of the antigen subdivide CD4 T cells into reciprocal subsets expressing either the high molecular weight isoforms CD45RA or RB or a molecule in which exons 4-6 have been spliced out (CD45R0). CD45R+ or RB+ CD4 T cells are potent in graft-versus-host reactions, and interleukin-2 related activities, whereas the CD45R0+ subset responds in vitro to recall antigens and provides help for antibody synthesis. It is unclear whether CD45R subsets derive from separate lineages, or are products of unidirectional or reversible differentiation. We show by transferring CD45R+ or CD45R- allotype-marked CD4 T cells into athymic nude rats that both subsets routinely generate cells of the opposite phenotype with a function that follows phenotype, not parentage. The recent equation of CD45R subsets as maturation stages representing 'naive' and 'memory' T cells is difficult to reconcile with this finding.  相似文献   

11.
Upon the aberrant activation of oncogenes, normal cells can enter the cellular senescence program, a state of stable cell-cycle arrest, which represents an important barrier against tumour development in vivo. Senescent cells communicate with their environment by secreting various cytokines and growth factors, and it was reported that this 'secretory phenotype' can have pro- as well as anti-tumorigenic effects. Here we show that oncogene-induced senescence occurs in otherwise normal murine hepatocytes in vivo. Pre-malignant senescent hepatocytes secrete chemo- and cytokines and are subject to immune-mediated clearance (designated as 'senescence surveillance'), which depends on an intact CD4(+) T-cell-mediated adaptive immune response. Impaired immune surveillance of pre-malignant senescent hepatocytes results in the development of murine hepatocellular carcinomas (HCCs), thus showing that senescence surveillance is important for tumour suppression in vivo. In accordance with these observations, ras-specific Th1 lymphocytes could be detected in mice, in which oncogene-induced senescence had been triggered by hepatic expression of Nras(G12V). We also found that CD4(+) T cells require monocytes/macrophages to execute the clearance of senescent hepatocytes. Our study indicates that senescence surveillance represents an important extrinsic component of the senescence anti-tumour barrier, and illustrates how the cellular senescence program is involved in tumour immune surveillance by mounting specific immune responses against antigens expressed in pre-malignant senescent cells.  相似文献   

12.
Jiang X  Clark RA  Liu L  Wagers AJ  Fuhlbrigge RC  Kupper TS 《Nature》2012,483(7388):227-231
Protective T-cell memory has long been thought to reside in blood and lymph nodes, but recently the concept of immune memory in peripheral tissues mediated by resident memory T (T(RM)) cells has been proposed. Here we show in mice that localized vaccinia virus (VACV) skin infection generates long-lived non-recirculating CD8(+) skin T(RM) cells that reside within the entire skin. These skin T(RM) cells are potent effector cells, and are superior to circulating central memory T (T(CM)) cells at providing rapid long-term protection against cutaneous re-infection. We find that CD8(+) T cells are rapidly recruited to skin after acute VACV infection. CD8(+) T-cell recruitment to skin is independent of CD4(+) T cells and interferon-γ, but requires the expression of E- and P-selectin ligands by CD8(+) T cells. Using parabiotic mice, we further show that circulating CD8(+) T(CM) and CD8(+) skin T(RM) cells are both generated after skin infection; however, CD8(+) T(CM) cells recirculate between blood and lymph nodes whereas T(RM) cells remain in the skin. Cutaneous CD8(+) T(RM) cells produce effector cytokines and persist for at least 6 months after infection. Mice with CD8(+) skin T(RM) cells rapidly cleared a subsequent re-infection with VACV whereas mice with circulating T(CM) but no skin T(RM) cells showed greatly impaired viral clearance, indicating that T(RM) cells provide superior protection. Finally, we show that T(RM) cells generated as a result of localized VACV skin infection reside not only in the site of infection, but also populate the entire skin surface and remain present for many months. Repeated re-infections lead to progressive accumulation of highly protective T(RM) cells in non-involved skin. These findings have important implications for our understanding of protective immune memory at epithelial interfaces with the environment, and suggest novel strategies for vaccines that protect against tissue tropic organisms.  相似文献   

13.
Bettelli E  Carrier Y  Gao W  Korn T  Strom TB  Oukka M  Weiner HL  Kuchroo VK 《Nature》2006,441(7090):235-238
On activation, T cells undergo distinct developmental pathways, attaining specialized properties and effector functions. T-helper (T(H)) cells are traditionally thought to differentiate into T(H)1 and T(H)2 cell subsets. T(H)1 cells are necessary to clear intracellular pathogens and T(H)2 cells are important for clearing extracellular organisms. Recently, a subset of interleukin (IL)-17-producing T (T(H)17) cells distinct from T(H)1 or T(H)2 cells has been described and shown to have a crucial role in the induction of autoimmune tissue injury. In contrast, CD4+CD25+Foxp3+ regulatory T (T(reg)) cells inhibit autoimmunity and protect against tissue injury. Transforming growth factor-beta (TGF-beta) is a critical differentiation factor for the generation of T(reg) cells. Here we show, using mice with a reporter introduced into the endogenous Foxp3 locus, that IL-6, an acute phase protein induced during inflammation, completely inhibits the generation of Foxp3+ T(reg) cells induced by TGF-beta. We also demonstrate that IL-23 is not the differentiation factor for the generation of T(H)17 cells. Instead, IL-6 and TGF-beta together induce the differentiation of pathogenic T(H)17 cells from naive T cells. Our data demonstrate a dichotomy in the generation of pathogenic (T(H)17) T cells that induce autoimmunity and regulatory (Foxp3+) T cells that inhibit autoimmune tissue injury.  相似文献   

14.
Recognition of bacterial glycosphingolipids by natural killer T cells   总被引:1,自引:0,他引:1  
Kinjo Y  Wu D  Kim G  Xing GW  Poles MA  Ho DD  Tsuji M  Kawahara K  Wong CH  Kronenberg M 《Nature》2005,434(7032):520-525
Natural killer T (NKT) cells constitute a highly conserved T lymphocyte subpopulation that has the potential to regulate many types of immune responses through the rapid secretion of cytokines. NKT cells recognize glycolipids presented by CD1d, a class I-like antigen-presenting molecule. They have an invariant T-cell antigen receptor (TCR) alpha-chain, but whether this invariant TCR recognizes microbial antigens is still controversial. Here we show that most mouse and human NKT cells recognize glycosphingolipids from Sphingomonas, Gram-negative bacteria that do not contain lipopolysaccharide. NKT cells are activated in vivo after exposure to these bacterial antigens or bacteria, and mice that lack NKT cells have a marked defect in the clearance of Sphingomonas from the liver. These data suggest that NKT cells are T lymphocytes that provide an innate-type immune response to certain microorganisms through recognition by their antigen receptor, and that they might be useful in providing protection from bacteria that cannot be detected by pattern recognition receptors such as Toll-like receptor 4.  相似文献   

15.
Peripheral education of the immune system by colonic commensal microbiota   总被引:1,自引:0,他引:1  
The instruction of the immune system to be tolerant of self, thereby preventing autoimmunity, is facilitated by the education of T cells in a specialized organ, the thymus, in which self-reactive cells are either eliminated or differentiated into tolerogenic Foxp3(+) regulatory T (T(reg)) cells. However, it is unknown whether T cells are also educated to be tolerant of foreign antigens, such as those from commensal bacteria, to prevent immunopathology such as inflammatory bowel disease. Here we show that encounter with commensal microbiota results in the peripheral generation of T(reg) cells rather than pathogenic effectors. We observed that colonic T(reg) cells used T-cell antigen receptors (TCRs) different from those used by T(reg) cells in other locations, implying an important role for local antigens in shaping the colonic T(reg)-cell population. Many of the local antigens seemed to be derived from commensal bacteria, on the basis of the in vitro reactivity of common colon T(reg) TCRs. These TCRs did not facilitate thymic T(reg)-cell development, implying that many colonic T(reg) cells arise instead by means of antigen-driven peripheral T(reg)-cell development. Further analysis of two of these TCRs by the creation of retroviral bone marrow chimaeras and a TCR transgenic line revealed that microbiota indigenous to our mouse colony was required for the generation of colonic T(reg) cells from otherwise naive T cells. If T cells expressing these TCRs fail to undergo T(reg)-cell development and instead become effector cells, they have the potential to induce colitis, as evidenced by adoptive transfer studies. These results suggest that the efficient peripheral generation of antigen-specific populations of T(reg) cells in response to an individual's microbiota provides important post-thymic education of the immune system to foreign antigens, thereby providing tolerance to commensal microbiota.  相似文献   

16.
Lelouard H  Gatti E  Cappello F  Gresser O  Camosseto V  Pierre P 《Nature》2002,417(6885):177-182
Dendritic cells (DCs) are antigen-presenting cells with the unique capacity to initiate primary immune responses. Dendritic cells have a remarkable pattern of differentiation (maturation) that exhibits highly specific mechanisms to control antigen presentation restricted by major histocompatibility complex (MHC). MHC class I molecules present to CD8(+) cytotoxic T cells peptides that are derived mostly from cytosolic proteins, which are ubiquitinated and then degraded by the proteasome. Here we show that on inflammatory stimulation, DCs accumulate newly synthesized ubiquitinated proteins in large cytosolic structures. These structures are similar to, but distinct from, aggresomes and inclusion bodies observed in many amyloid diseases. Notably, these dendritic cell aggresome-like induced structures (DALIS) are transient, require continuous protein synthesis and do not affect the ubiquitin-proteasome pathway. Our observations suggest the existence of an organized prioritization of protein degradation in stimulated DCs, which is probably important for regulating MHC class I presentation during maturation.  相似文献   

17.
HIV preferentially infects HIV-specific CD4+ T cells   总被引:34,自引:0,他引:34  
HIV infection is associated with the progressive loss of CD4(+) T cells through their destruction or decreased production. A central, yet unresolved issue of HIV disease is the mechanism for this loss, and in particular whether HIV-specific CD4(+) T cells are preferentially affected. Here we show that HIV-specific memory CD4(+) T cells in infected individuals contain more HIV viral DNA than other memory CD4(+) T cells, at all stages of HIV disease. Additionally, following viral rebound during interruption of antiretroviral therapy, the frequency of HIV viral DNA in the HIV-specific pool of memory CD4(+) T cells increases to a greater extent than in memory CD4(+) T cells of other specificities. These findings show that HIV-specific CD4(+) T cells are preferentially infected by HIV in vivo. This provides a potential mechanism to explain the loss of HIV-specific CD4(+) T-cell responses, and consequently the loss of immunological control of HIV replication. Furthermore, the phenomenon of HIV specifically infecting the very cells that respond to it adds a cautionary note to the practice of structured therapy interruption.  相似文献   

18.
Contrary to the proinflammatory role of mast cells in allergic disorders, the results obtained in this study establish that mast cells are essential in CD4+CD25+Foxp3+ regulatory T (T(Reg))-cell-dependent peripheral tolerance. Here we confirm that tolerant allografts, which are sustained owing to the immunosuppressive effects of T(Reg) cells, acquire a unique genetic signature dominated by the expression of mast-cell-gene products. We also show that mast cells are crucial for allograft tolerance, through the inability to induce tolerance in mast-cell-deficient mice. High levels of interleukin (IL)-9--a mast cell growth and activation factor--are produced by activated T(Reg) cells, and IL-9 production seems important in mast cell recruitment to, and activation in, tolerant tissue. Our data indicate that IL-9 represents the functional link through which activated T(Reg) cells recruit and activate mast cells to mediate regional immune suppression, because neutralization of IL-9 greatly accelerates allograft rejection in tolerant mice. Finally, immunohistochemical analysis clearly demonstrates the existence of this novel T(Reg)-IL-9-mast cell relationship within tolerant allografts.  相似文献   

19.
ATP drives lamina propria T(H)17 cell differentiation   总被引:2,自引:0,他引:2  
Interleukin (IL)-17-producing CD4(+) T lymphocytes (T(H)17 cells) constitute a subset of T-helper cells involved in host defence and several immune disorders. An intriguing feature of T(H)17 cells is their selective and constitutive presence in the intestinal lamina propria. Here we show that adenosine 5'-triphosphate (ATP) that can be derived from commensal bacteria activates a unique subset of lamina propria cells, CD70(high)CD11c(low) cells, leading to the differentiation of T(H)17 cells. Germ-free mice exhibit much lower concentrations of luminal ATP, accompanied by fewer lamina propria T(H)17 cells, compared to specific-pathogen-free mice. Systemic or rectal administration of ATP into these germ-free mice results in a marked increase in the number of lamina propria T(H)17 cells. A CD70(high)CD11c(low) subset of the lamina propria cells expresses T(H)17-prone molecules, such as IL-6, IL-23p19 and transforming-growth-factor-beta-activating integrin-alphaV and -beta8, in response to ATP stimulation, and preferentially induces T(H)17 differentiation of co-cultured naive CD4(+) T cells. The critical role of ATP is further underscored by the observation that administration of ATP exacerbates a T-cell-mediated colitis model with enhanced T(H)17 differentiation. These observations highlight the importance of commensal bacteria and ATP for T(H)17 differentiation in health and disease, and offer an explanation of why T(H)17 cells specifically present in the intestinal lamina propria.  相似文献   

20.
Objective: To investigate the in-vitro antitumor immune responses of dendritoma formed by mouse hepatocellular carcinoma (HCC) cells and lymphotactin (Lptn) gene modified dendritic cells (DCs). Method: DCs prepared from mouse bone marrow were genetically modified by lymphotactin adenovirus, and fused with H22 cells by polyethylene glycol (PEG). RT-PCR and ELISA were employed to identify lymphotactin expression at mRNA and protein level. Cell phenotypes and fusion efficiency was detected by FACS. The stimulatory effect of DC on T cells was detected by mixed lymphocyte reaction. The cytotoxicity activity against H22 cells was assayed by LDH method. Results: Lymphotactin could be efficiently expressed by DCLptn/H22 hybridoma. DCLptn/H22 cells could induce potent T cell proliferation effect and generate strong cytotoxic T lymphocyte (CTL) reaction against allogenic H22 cells. Conclusion: Lymphotactin genetic modification could enhance the in vitro immune activity of the dendritoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号