首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用间苯二酚-甲醛为碳源,三聚氰胺为氮源,以NaOH为蚀刻剂,成功合成氮掺杂碳包覆的蛋黄壳结构硅(Si@void@N-C)锂离子电池复合负极材料.对样品进行XRD、 SEM和X射线电子能谱,透射电子显微镜(TEM)和电化学测试等表征及测试.结果表明,成功合成了蛋黄壳结构的Si@void@N-C复合负极材料.同时,该复合材料具有优异的电化学性能,以0.1 A/g的电流密度进行充放电,首次容量可达1 282.3 mAh/g,经过100次循环后,其比容量仍高达994.2 mAh/g,其容量保持率为77.5%,表现出了良好的循环性能.Si@void@N-C材料中,氮掺杂的碳壳可以增加复合材料的导电性,同时,蛋黄壳结构可有效缓解硅的体积效应,有利于形成稳定的SEI膜,从而提高电池的循环稳定性.  相似文献   

2.
金属有机框架(MOFs)是一类很有前景的多孔材料,其水稳定性和绿色环保的合成是当今工业界及学术界研究的两个重要课题。大部分MOFs材料通过溶剂热法制备,制备过程中使用的有机溶剂(如DMF)会限制其商业生产规模。因此,如果能够使用水作为溶剂宏量制备MOFs材料具有十分重要的研究意义。本文旨在开发具有结构优势和高存储容量的双金属硒化物作为锂离子电池的负极材料,利用KOH辅助的水性策略宏量合成双金属有机框架材料,并衍生制备多种双金属硒化物氮/碳(NC)复合材料,采用扫描、透射电镜观察、电化学测试等研究。其中,以Fe–Co–Se/NC为例,作为锂离子电池负极材料时,Fe–Co–Se/NC在1.0 A·g?1时实现了1165.9 mAh·g?1的优异初始比容量,经过550次循环后Fe–Co–Se/NC负极的可逆容量为1247.4 mAh·g?1。这些优异的性能与其介孔三维(3D)多面体结构有关,其稳定的三维结构保证了结构稳定性和电解质的润湿性,均匀分布的Fe–Co–Se纳米颗粒尺寸加速了电化学反应动力学并极大地抑制了体积膨胀。由此总结并提出,KOH辅助水相合成双金属MOFs的策略具有普适性,并且衍生制得的双金属硒化物氮/碳复合材料保留了双金属MOFs的三维多孔多面体结构,可将该技术扩展到其他MOFs的合成及储能与转换领域的应用。  相似文献   

3.
采用水热法制备SnS2微米花(MFs),以聚多巴胺衍生的氮掺杂碳(NC)作为还原剂和缓冲基质,合成了SnS2/SnS/NC异质结构微米花(SSNC MFs)作为钾离子电池负极材料。SnS2和SnS形成的异质界面加快了电荷的转移,进而改善了电化学动力学。同时,NC增强了复合材料的导电性和结构稳定性。因而,SSNC MFs电极在0.1 A/g下,循环50周的可逆比容量为492.4 mAh/g, 2.0 A/g下仍保持在199.6 mAh/g,远大于相同测试条件下的SnS2MFs电极(分别为132.1和28.4 mAh/g),表现出显著提升的可逆比容量、循环稳定性和倍率性能。  相似文献   

4.
通过原位复合方法合成碳包覆MnO/石墨烯(C@MnO/GN)复合材料并探究其作为锂离子电池负极材料的电化学性能.扫描电子显微镜(SEM)以及透射电子显微镜(TEM)表征结果表明,MnO纳米颗粒(直径约为30~50nm)均匀分散在石墨烯片层上,且颗粒外面包裹一层厚度约为5nm的碳层.电化学测试结果表明该材料作为锂离子电池负极具有优异的倍率和循环性能.0.2和0.5A/g电流密度下,比容量分别为800和700mAh/g;10A/g电流密度下比容量仍能保持在372mAh/g;当电流密度调回0.5A/g时,其比容量仍能恢复到730mAh/g.该材料也表现出优异的循环性能,在5和10A/g电流密度下依次循环100圈,容量保持率几乎100%.  相似文献   

5.
过渡金属氧化物作为锂离子电池(lithium-ion batteries,LIBs)阳极材料时具有较高的理论容量,但因其电导率低,以及充放电过程中的体积膨胀效应常会导致容量的快速衰减.碳包覆是提升金属氧化物导电性的有效方法,二者之间的协同效应也可以有效提升材料的电化学性能.以MnO_2纳米线为模板制备出MnO_2@ZIF-67有机-无机杂化纳米结构,再通过退火处理合成了氮掺杂碳包覆的MnO@CoMn_2O_4纳米线复合材料(MnO@CoMn_2O_4@N-C).ZIF-67的有机配体在高温煅烧过程中发生碳化反应,产生了氮掺杂碳,提升了导电性.当作为锂离子电池阳极材料时,MnO@CoMn_2O_4/N-C纳米线复合材料在0.1 A/g电流密度下的首次放电比容量为1 594.6 mA·h/g,并且在100次充放电循环后的放电比容量仍保持在925.8 mA.h/g,在0.5 A/g电流密度下经200次充放电循环后的放电比容量仍维持在837.6 mA·h/g,同时具有优异的倍率循环性能.这种优异的电化学储能特性主要来源于复合材料的特殊结构,以及氮掺杂碳的包覆.  相似文献   

6.
采用高温固相法合成了掺锆锂钛氧复合氧化物作为锂离子电池负极材料,并对材料进行了X射线衍射分析、电化学阻抗测试、循环伏安测试及恒电流充放电测试,锆的掺杂并未改变材料的晶体结构,但降低了材料的规整度,实验结果表明:锆的掺杂在一定程度上改善了锂钛氧化合物的电化学性能,降低了电极极化,在电极表面未形成钝化膜,其中以掺杂比为Li:Ti=1:10(原子比)的材料性能最好,首次放电比容量可达到167,5mAh·g^-1,经过50次循环后,放电容量仍保持在146,9mAh·g^-1,  相似文献   

7.
文章采用固相法合成了电化学性能优异的碳包覆的锂离子电池负极材料Li3.9Mn0.1Ti5O12/C,并对材料进行了XRD、激光粒度分析、循环伏安测试及恒电流充放电测试。结果表明:Mn的掺杂未改变材料的晶体结构,由于Mn4+对Li4Ti5O12的晶胞内部的掺杂和C对其晶胞外部的包覆,使复合材料的电导率,大电流循环稳定性和可逆比容量都明显提高。在1C充放电循环时,Li3.9Mn0.1Ti5O12/C首次放电容量为162.4mAh/g,50次循环后,稳定在159.6mAh/g,容量保持率为98.3%;在2C充放电循环时,首次放电容量达到了153.5mAh/g,展示了优良的电化学特性。  相似文献   

8.
硅是一种具有应用前景的负极材料。为了解决在电化学循环过程中由于硅电极体积变化较大、导电性比较差而造成负极材料比容量迅速衰减及其循环性能不稳定的问题,本研究利用溶胶-凝胶法,经过镁热反应制得具有三明治结构的负极材料石墨烯-硅-石墨烯;通过实验研究发现负极材料G-Si-1:1具有较好的电化学性能,在电流密度为0.1 A/g时首次放电比容量为1150 m A·h·g~(-1),循环100周时放电比容量为534.2 m A·h·g~(-1)。负极材料石墨烯纳米片负载硅纳米颗粒的合成路线较为简单,并且具有较高的放电比容量和较好的循环性能,在未来具有较好的应用前景。  相似文献   

9.
本文通过超声分散、水热生长和煅烧方法制备了新型蜂窝结构Si/Co3O4复合负极材料,在此基础上研究其复合结构与电化学性能的关系。采用X射线衍(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对复合材料的物相、微观形貌进行表征,并采用电化学手段对其性能进行测试。结果表明:硅纳米颗粒主要分布于Co3O4蜂窝孔洞结构的内层;相比于纯Si负极材料,蜂窝结构Si/Co3O4复合材料具有更好的结构稳定性、倍率性能和循环性能,首次放电比容量为1475 mAh g-1,第二次维持在851 mAh g-1,经过75 次循环后放电比容量仍有 802 mAh g-1,较第二次比容量损失率仅为0.17%/周,这主要是归因于硅纳米颗粒和Co3O4之间存的空隙为Si负极嵌锂过程中的体积膨胀提供了空间,有效缓冲Si负极的体积变化。  相似文献   

10.
以二氰二胺为氮掺杂剂,采用溶胶凝胶法制备了氮掺杂碳包覆LiFePO_4的复合材料,并且分析了氮掺杂量对电极材料结构与性能的影响。研究结果表明,柠檬酸和二氰二胺在高温下的原位分解使合成的LiFePO_4颗粒表面包覆了一层氮掺杂的碳膜,有效的增加了各颗粒间的电接触,改善了LiFePO_4的电化学性能。当氮掺杂量为0.35 wt%时,LiFePO_4@N_(0.35%)C样品具有最优良的电化学性能。在2.5~4.2 V的电压范围内,电极材料在0.1 C倍率下的首次放电比容量达到157.2 mAh/g,经过30个循环后放电容量基本不变。  相似文献   

11.
以累托石为原料,通过镁热还原制备多孔单质硅,然后以葡萄糖为碳源进行热处理覆碳制备Si/C负极材料。采用XRD、BET、SEM、TG分析了镁热还原条件对材料结构的影响,利用电化学工作站和电池充放电测试系统考察了Si/C负极材料的电化学性能。研究表明,累托石镁热还原的多孔硅的孔容、平均孔径、硅含量对Si/C复合材料的电化学性能有重要影响。随着镁热还原过程中金属镁质量的增加,制备的Si/C负极材料的电化学性能先增加后降低,当累托石与金属镁质量比为1∶0. 4时,制备的复合材料电化学性能最佳,在电流密度为0. 1 A/g时,材料首圈比容量最高可达1 120 mAh/g,循环200圈比容量仍能保持555 mAh/g。  相似文献   

12.
过渡金属氧化物作为锂离子电池(lithium-ion batteries, LIBs)阳极材料时具有较高的理论容量, 但因其电导率低, 以及充放电过程中的体积膨胀效应常会导致容量的快速衰减. 碳包覆是提升金属氧化物导电性的有效方法, 二者之间的协同效应也可以有效提升材料的电化学性能. 以MnO$_{2}$纳米线为模板制备出MnO$_{2}$@ZIF-67有机-无机杂化纳米结构, 再通过退火处理合成了氮掺杂碳包覆的MnO@CoMn$_{2}$O$_{4}$纳米线复合材料(MnO@CoMn$_{2}$O$_{4}$@N-C). ZIF-67的有机配体在高温煅烧过程中发生碳化反应, 产生了氮掺杂碳, 提升了导电性. 当作为锂离子电池阳极材料时, MnO@CoMn$_{2}$O$_{4}$/N-C纳米线复合材料在0.1 A/g电流密度下的首次放电比容量为1 594.6 mA$\cdot$h/g, 并且在100次充放电循环后的放电比容量仍保持在 925.8 mA$\cdot$h/g, 在0.5 A/g电流密度下经200次充放电循环后的放电比容量仍维持在837.6 mA$\cdot$h/g, 同时具有优异的倍率循环性能. 这种优异的电化学储能特性主要来源于复合材料的特殊结构, 以及氮掺杂碳的包覆.  相似文献   

13.
采用高温热解方法成功地合成了高容量硅/碳复合负极材料.通过X射线衍射分析、热重分析、扫描电子显微镜观察、透射电子显微镜观察、恒电流充放电测试、循环伏安法等手段研究了复合材料的性能.结果表明:硅/碳复合材料由Si、C以及少量SiO2组成;硅/碳复合材料中碳的质量分数约在39%左右;经电化学性能测试,在电流0.2 mA下,该硅/碳复合材料首次充电容量768 mAh·g-1,首次库仑效率75.6%,70次循环后可逆比容量仍为529 mAh·g-1,平均容量衰减率为0.44%.这些性能改善归因于硅/碳复合材料中碳的引进,硅表面存在的碳涂层提供了一个快速锂运输通道,降低了电池的阻抗并且充放电过程中稳定了电极的组成.  相似文献   

14.
尖晶石型掺杂锂钛复合氧化物的性能研究   总被引:1,自引:0,他引:1  
陈猛  金江敏  李金媛 《应用科技》2007,34(10):58-60
采用高温固相法合成尖晶石型锂钛复合氧化物,并对材料进行Sn、Cr掺杂改性.采用XRD测试对材料进行表征,恒流充放电,电化学阻抗,循环伏安测试方法对材料进行电化学性能测试.实验结果表明,Sn、Cr复合掺杂提高了材料的容量,其中,ST首次放电容量达到168 mAh/g,SC的首次放电容量达到170 mAh/g.同时降低了材料的放电电压平台,改善了材料的电化学性能.  相似文献   

15.
采用共沉淀法、液氮冷淬工艺和热处理技术制备了高容量钠离子电池SnSbCo/rGO负极复合材料。通过XRD、SEM、TEM、恒流充放电和交流阻抗等测试分析技术对该负极材料进行表征和电化学性能测试。结果表明,在100 mA/g的电流密度下,经50次充放电循环后电极的可逆容量保持在567 mAh/g。同等条件下,纯SnSbCo的电极比容量为456mAh/g。SnSbCo/rGO负极复合材料的电化学性能的改善主要是由于rGO在提高复合材料导电性的同时,缓冲了SnSbCo合金颗粒由于团聚产生的体积膨胀效应。  相似文献   

16.
硅材料具有高理论比容量(4 200mAh/g),是最具希望的下一代锂离子电池负极材料之一,但是硅材料巨大的体积效应(300%)和较差的导电性严重影响其电化学性能,阻碍其实际应用.为此,采用海藻酸水凝胶充当固定剂和碳源,将硅纳米颗粒和氧化石墨烯进行组装,制备了硅/还原氧化石墨烯/碳(Si/rGO/C)复合材料,采用粉末X射线衍射(XRD)、拉曼(Raman)光谱、热重分析(TGA)、比表面积测试、扫描电镜(SEM)和透射电镜(TEM)等表征材料的结构、化学组成及形貌,并对材料进行电化学性能测试.结果表明:rGO在复合材料内部构建了分散良好的导电网络,Si纳米颗粒填充在导电网络中并通过碳层牢固地锁定在rGO片层上.rGO与碳层的复合作用有效缓冲了Si纳米颗粒在充放电时的体积变化,并且显著提高了复合材料的导电性,因此,Si/rGO/C复合材料用作锂离子电池负极时表现出优异的电化学性能:以1.0A/g电流密度循环100圈,保持约1 000mAh/g的高可逆比容量以及77.6%的容量保持率.  相似文献   

17.
通过简单的水热结合退火的方式合成了MoS2/C/MXene复合材料,其中MoS2为1T晶型。MoS2/C纳米片均匀地生长在MXene薄片上,呈现出独特的多孔异质结构,这种结构不仅有效抑制了MXene薄片的重新堆积,还缓解了MoS2充放电过程中的体积膨胀。无序碳的引入提高了复合材料的导电性,并使MoS2的晶型从2H转变为1T。将MoS2/C/MXene复合材料作为锂离子电池负极材料,表现出优秀的循环性能。在1 A·g-1的电流密度下循环1 000次后拥有574.2 mA·h·g-1的比容量。这项研究为制备具有良好电化学性能的锂离子电池负极材料提供了一种设计策略。  相似文献   

18.
利用溶剂挥发结合高温热聚合法制备了氮掺杂多孔碳(NPC)材料,并通过SEM、TEM、TG、N_2吸附-脱附、XPS等表征手段对样品的微观形貌结构和元素组成进行了分析.结果表明,氮元素掺杂明显增加材料的比表面积和孔体积,当制备的氮掺杂多孔碳材料的含氮量为4.2%(原子分数)时,它的比表面积高达422.0m~2/g高于没有氮掺杂样品的301.1m~2/g.此外,采用循环伏安、恒电流充放电和交流阻抗对NPC材料的电化学性能进行了深入研究.测试结果表明氮元素掺杂能够明显增加材料的比电容量,降低材料的内阻,极大提高碳材料的电化学性能.在0.5A/g的电流密度下,通过氮元素掺杂使得材料的比电容从83.8F/g提高至162.8F/g,内阻值从1.39Ω降低至0.47Ω;并且所得的氮掺杂多孔碳样品具有良好的倍率性能和循环稳定性.  相似文献   

19.
采用新兴的软化学方法合成了锡氧化物基粉末材料.用X-射线衍射、扫描电镜和电化学方法对材料的微观结构、形貌和电化学性能进行了研究.结果表明:锡氧化物基材料的颗粒的平均粒径约为200 nm,颗粒之间形成了类似中孔材料的相互连接的网状结构.这种材料的可逆充电容量超过570 mAh/g,30次循环后平均每次循环的容量衰减只有0.15%.良好的电化学性能表明锡氧化物基材料有望作为新一代锂离子电池的负极材料.  相似文献   

20.
钛酸锂因循环性能好、安全,是目前较为理想的锂离子电池负极材料。采用溶胶-凝胶二步煅烧法制备Ce掺杂钛酸锂Li4Ti5-xCexO12(x=0,0.1,0.15,0.2),用SEM、XRD等物理表征手段和恒流充放电、交流阻抗等电化学方法表征材料性能,以考察铈掺杂量对材料电化学性能的影响。结果表明:x=0.15的样品粒径较小,在0.1C时比容量为168.0 mAh/g,1C时比容量为116.0mAh/g,倍率性能优于未掺杂的样品,1C下循环10次后容量仍保持在112.7mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号