首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The thyroid hormone 3,3,5-triiodo-l-thyronine (T3) mediates several physiological processes, including embryonic development, cellular differentiation, metabolism, and the regulation of cell proliferation. Thyroid hormone receptors (TRs) generally act as heterodimers with the retinoid X receptor (RXR) to regulate target genes. In addition to their developmental and metabolic functions, TRs have been shown to play a tumor suppressor role, suggesting that their aberrant expression can lead to tumor transformation. Conversely, recent reports have shown an association between overexpression of wild-type TRs and tumor metastasis. Signaling crosstalk between T3/TR and other pathways or specific TR coregulators appear to affect tumor development. Since TR actions are complex as well as cell context-, tissue- and time-specific, aberrant expression of the various TR isoforms has different effects during diverse tumorigenesis. Therefore, elucidation of the T3/TR signaling mechanisms in cancers should facilitate the identification of novel therapeutic targets. This review provides a summary of recent studies focusing on the role of TRs in hepatocellular carcinomas (HCCs).  相似文献   

2.
The present study deals with a possible mechanism controlling the transport of manganese (Mn), an essential trace element, from the circulation to the thyroid. Mice were pretreated with propylthiouracil (PTU) or triiodothyronine (T3), and a measurement of the thyroid:serum concentration ratio (T/S) of radioactive manganese (54Mn) was carried out. The T/S of54Mn was greatly enhanced by PTU, but reduced by T3. Several methods were used to demonstrate that the T/S of54Mn depends upon the level of thyroid-stimulating hormone (TSH) in the serum. First, bovine TSH was injected into mice; an increase in the T/S resulted. Secondly, serum thyroxine and T3 levels measured by radioimmunoassay (RIA) suggested that PTU produced an increase in serum TSH and T3 a decrease. However, direct measurement of mouse TSH by RIA for rat TSH failed to produce proof of any changes in TSH level, owing to poor cross-reactivity. Taking all the information into account, it is concluded that Mn-transport into the thyroid is controlled by the thyroid state.  相似文献   

3.
Summary Using indomethacin (Ind), a prostaglandin, synthesis inhibitor, in vivo experiments in rats and in vitro experiments with perifusion systems of rat thyroids and pituitaries were conducted. After 35 days of intragastric infusion of Ind, serum TSH levels were markedly increased, the thyroid was swollen and, as a consequence, T3 and T4 levels were normal. The T3 release from perifused rat thyroids under continuous stimulation with 10 mU/ml TSH was inhibited significantly (p<0.01) by 1.0×10–6 M Ind. On the other hand, the TSH release from perifused rat pituitaries under TRH stimulation was enhanced conspicuously by Ind. It was concluded that Ind decelerated thyroid hormone release from the thyroid and accelerated TSH release from the pituitary in perifusion systems.  相似文献   

4.
Summary The injection of thyrotropin releasing hormone into cattle resulted in a rapid decrease in the T4/T3 molar ratio. 2 breeds of cattle, Shorthorn and Africander Cross were studied. The decrease in the T4/T3 molar ratio was significantly greater in the Shorthorn breed. It is concluded that acute stimulation of the thyroid gland with TRH results in enhanced release of both T3 and T4 and that T3 is discharged more rapidly than T4.  相似文献   

5.
Summary Single injections of thyroid hormone (T3) produce liver glycogen depletion in chickens. This effect cannot be suppressed by protein synthesis inhibitors and is previous to the hormone-induced increase in protein synthesis.  相似文献   

6.
The currently available medical treatment options of adrenocortical cancer (ACC) are limited. In our previous meta-analysis of adrenocortical tumor genomics data, ACC was associated with reduced retinoic acid production and retinoid X receptor-mediated signaling. Our objective has been to study the potential antitumoral effects of 9-cis retinoic acid (9-cisRA) on the ACC cell line NCI-H295R and in a xenograft model. Cell proliferation, hormone secretion, and gene expression have been studied in the NCI-H295R cell line. A complex bioinformatics approach involving pathway and network analysis has been performed. Selected genes have been validated by real-time qRT-PCR. Athymic nude mice xenografted with NCI-H295R have been used in a pilot in vivo xenograft model. 9-cisRA significantly decreased cell viability and steroid hormone secretion in a concentration- and time-dependent manner in the NCI-H295R cell line. Four major molecular pathways have been identified by the analysis of gene expression data. Ten genes have been successfully validated involved in: (1) steroid hormone secretion (HSD3B1, HSD3B2), (2) retinoic acid signaling (ABCA1, ABCG1, HMGCR), (3) cell-cycle damage (GADD45A, CCNE2, UHRF1), and the (4) immune response (MAP2K6, IL1R2). 9-cisRA appears to directly regulate the cell cycle by network analysis. 9-cisRA also reduced tumor growth in the in vivo xenograft model. In conclusion, 9-cisRA might represent a promising new candidate in the treatment of hormone-secreting adrenal tumors and adrenocortical cancer.  相似文献   

7.
Ferroptosis is a recently recognized caspase-independent form of regulated cell death that is characterized by the accumulation of lethal lipid ROS produced through iron-dependent lipid peroxidation. Considering that regulation of fatty acid metabolism is responsible for the membrane-resident pool of oxidizable fatty acids that undergo lipid peroxidation in ferroptotic processes, we examined the contribution of the key fatty acid metabolism enzyme, acyl-CoA synthetase long-chain family member 4 (ACSL4), in regulating ferroptosis. By using CRISPR/Cas9 technology, we found that knockout of Acsl4 in ferroptosis-sensitive murine and human cells conferred protection from erastin- and RSL3-induced cell death. In the same cell types, deletion of mixed lineage kinase domain-like (Mlkl) blocked susceptibility to necroptosis, as expected. Surprisingly, these studies also revealed ferroptosis and necroptosis are alternative, in that resistance to one pathway sensitized cells to death via the other pathway. These data suggest a mechanism by which one regulated necrosis pathway compensates for another when either ferroptosis or necroptosis is compromised. We verified the synergistic contributions of ferroptosis and necroptosis to tissue damage during acute organ failure in vivo. Interestingly, in the course of pathophysiological acute ischemic kidney injury, ACSL4 was initially upregulated and its expression level correlated with the severity of tissue damage. Together, our findings reveal ACSL4 to be a reliable biomarker of the emerging cell death modality of ferroptosis, which may also serve as a novel therapeutic target in preventing pathological cell death processes.  相似文献   

8.
Summary We established a perifusion system using mouse thyroid glands. In this system, TSH increased the release of T3 and T4 significantly, and the response of thyroglobulin to TSH was delayed in comparison with that of T3 and T4.  相似文献   

9.
Identifying the small molecules that permit precise regulation of embryonic stem (ES) cell proliferation should further support our understanding of the underlying molecular mechanisms of self renewal. In the present study, we showed that PGE2 increased [3H]-thymidine incorporation in a time and dose dependent manner. In addition, PGE2 increased the expression of cell cycle regulatory proteins, the percentage of cells in S phase and the total number of cells. PGE2 obviously increased E-type prostaglandin (EP) receptor 1 mRNA expression level compare to 2, 3, 4 subtypes. EP1 antagonist also blocked PGE2-induced cell cycle regulatory protein expression and thymidine incorporation. PGE2 caused phosphorylation of protine kinase C, Src, epidermal growth factor (EGF) receptor, phosphatidylinositol 3-kinase (PI3K)/Akt phosphorylation, and p44/42 mitogen-activated protein kinase (MAPK), which were blocked by each inhibitors. In conclusion, PGE2-stimulated proliferation is mediated by MAPK via EP1 receptor-dependent PKC and EGF receptor-dependent PI3K/Akt signaling pathways in mouse ES cells. Received 30 January 2009; received after revision 03 March 2009; accepted 10 March 2009  相似文献   

10.
The aim of this study was to investigate the contribution of mitochondrial dysfunction to chemoresistance and migration of hepatoma cells. We found that inhibition of mitochondrial respiration and mitochondrial DNA (mtDNA) depletion resulted in induction of amphiregulin (AR) expression in HepG2 cells. Upon oligomycin treatment of HepG2 cells, the cytosolic Ca2+ was significantly raised after 30 min, and the intracellular level of reactive oxygen species (ROS) was elevated 2.2-fold after 4 h. Moreover, the condition medium of oligomycin-treated HepG2 cells was found to stimulate the migration of SK-Hep-1 cells. On the other hand, oligomycin-induced cisplatin-resistance and cell migration of HepG2 cells were attenuated by AR-specific RNA interference (#L-017435, Dharmacon) and a neutralizing antibody (MAB262, R&D Systems), respectively. Together, these findings suggest that mitochondrial dysfunction induced Ca2+ mobilization, and ROS overproduction, which modulated the chemo-resistance and migration of hepatoma cells through the induction and activation of AR. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Y.-H. Wei, H.-C. Lee: These authors contribute equally to this work. Received 02 December 2008; received after revision 16 March 2009; accepted 17 March 2009  相似文献   

11.
MicroRNAs (miRNAs) coordinate vascular repair by regulating injury-induced gene expression in vascular smooth muscle cells (SMCs) and promote the transition of SMCs from a contractile to a proliferating phenotype. However, the effect of miRNA expression in SMCs on neointima formation is unclear. Therefore, we studied the role of miRNA biogenesis by Dicer in SMCs in vascular repair. Following wire-induced injury to carotid arteries of Apolipoprotein E knockout (Apoe ?/?) mice, miRNA microarray analysis revealed that the most significantly regulated miRNAs, such as miR-222 and miR-21-3p, were upregulated. Conditional deletion of Dicer in SMCs increased neointima formation by reducing SMC proliferation in Apoe ?/? mice, and decreased mainly the expression of miRNAs, such as miR-147 and miR-100, which were not upregulated following vascular injury. SMC-specific deletion of Dicer promoted growth factor and inflammatory signaling and regulated a miRNA–target interaction network in injured arteries that was enriched in anti-proliferative miRNAs. The most connected miRNA in this network was miR-27a-3p [e.g., with Rho guanine nucleotide exchange factor 26 (ARHGEF26)], which was expressed in medial and neointimal SMCs in a Dicer-dependent manner. In vitro, miR-27a-3p suppresses ARHGEF26 expression and inhibits SMC proliferation by interacting with a conserved binding site in the 3′ untranslated region of ARHGEF26 mRNA. We propose that Dicer expression in SMCs plays an essential role in vascular repair by generating anti-proliferative miRNAs, such as miR-27a-3p, to prevent vessel stenosis due to exaggerated neointima formation.  相似文献   

12.
13.
Zusammenfassung Zwei Ochratoxinanaloge, Ochratoxin TA (OTA) und TC (OTC) wurden aus Ochratoxin- chemisch synthetisiert indem Phenylalanin und sein Äthylester im Molekül durch Tyrosin und Tyrosinäthylester substituiert wurden. Der Hühnerembryonentest ergab, dass OTC etwas toxischer und OTA etwas weniger toxisch ist als Ochratoxin A (OA).  相似文献   

14.
Through subtraction of tumor-specific CpG methylation, we identified receptor tyrosine kinase-like orphan receptor 2 (ROR2) as a candidate tumor suppressor gene (TSG). ROR2 is a specific receptor or co-receptor for WNT5A, involved in canonical and non-canonical WNT signaling, with its role in tumorigenesis controversial. We characterized its functions and related cell signaling in common carcinomas. ROR2 was frequently silenced by promoter CpG methylation in multiple carcinomas including nasopharyngeal, esophageal, gastric, colorectal, hepatocellular, lung, and breast cancers, while no direct correlation of ROR2 and WNT5A expression was observed. Ectopic expression of ROR2 resulted in tumor suppression independent of WNT5A status, through inhibiting tumor cell growth and inducing cell cycle arrest and apoptosis. ROR2 further suppressed epithelial-mesenchymal transition and tumor cell stemness through repressing β-catenin and AKT signaling, leading to further inhibition of tumor cell migration/invasion and increased chemo-sensitivity. Thus ROR2, as an epigenetically inactivated TSG, antagonizes both β-catenin and AKT signaling in multiple tumorigenesis. Its epigenetic silencing could be a potential tumor biomarker and therapeutic target for carcinomas.  相似文献   

15.
Summary We examined the role of thyroid hormone in mediating morphological integration between cranial cartilage and bone during anuran metamorphosis. Exogenous T3 applied to premetamorphic tadpoles (Bombina orientalis) via intracranial implants of plastic micropellets precociously induced typical metamorphic changes in both tissues, but also dissociated the relative timing of developmental events between them. Morphological integration between the two primary cranial tissues is achieved in part by each tissue responding independently to endocrine factors and does not reflect a tight developmental coupling between them.  相似文献   

16.
Summary The effects of photoperiod, temperature and testosterone treatment on plasma T3 and T4 levels were investigated in the Djungarian hamster. Plasma T3 level was affected by temperature (25°C<7°C) but not by photoperiod. Plasma T4 level was affected by photoperiod (short day < long day) at 25°C. Administration of testosterone increased plasma T4 level under short photoperiod at 25°C. Thus, higher plasma T4 level under long photoperiod at 25°C might be induced by testosterone.  相似文献   

17.
A theory is usually said to be time reversible if whenever a sequence of states S1(t1), S2(t2), S3(t3) is possible according to that theory, then the reverse sequence of time reversed states S3T(t1), S2T(t2), S1T(t3) is also possible according to that theory; i.e., one normally not only inverts the sequence of states, but also operates on the states with a time reversal operator T. David Albert and Paul Horwich have suggested that one should not allow such time reversal operations T on states. I will argue that time reversal operations on fundamental states should be allowed. I will furthermore argue that the form that time reversal operations take is determined by the type of fundamental geometric quantities that occur in nature and that we have good reason to believe that the fundamental geometric quantities that occur in nature correspond to irreducible representations of the Lorentz transformations. Finally, I will argue that we have good reason to believe that space-time has a temporal orientation.  相似文献   

18.
19.
Summary The effect of thyroid deficiency and treatment with tri-iodothyronine (T3) on oxygen consumption by neonatal (6-day-old and 15-day-old) rat brain was examined using glutamate, -hydroxybutyrate, succinate and ascorbate+TMPD as substrates. The respiration rates decreased significantly in 15-day-old hypothyroid pups. Treatment of normal and of hypothyroid pups with T3 resulted in a significant increase in the respiration rate at both ages. Respiration rates with glucose as the substrate were not affected under these conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号