首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at a level that may soon be observable. Previous work has argued that the annihilation signal will be dominated by emission from very small clumps (perhaps smaller even than the Earth), which would be most easily detected where they cluster together in the dark matter haloes of dwarf satellite galaxies. Here we report that such small-scale structure will, in fact, have a negligible impact on dark matter detectability. Rather, the dominant and probably most easily detectable signal will be produced by diffuse dark matter in the main halo of the Milky Way. If the main halo is strongly detected, then small dark matter clumps should also be visible, but may well contain no stars, thereby confirming a key prediction of the cold dark matter model.  相似文献   

2.
Mayer L  Kazantzidis S  Mastropietro C  Wadsley J 《Nature》2007,445(7129):738-740
The known galaxies most dominated by dark matter (Draco, Ursa Minor and Andromeda IX) are satellites of the Milky Way and the Andromeda galaxies. They are members of a class of faint galaxies, devoid of gas, known as dwarf spheroidals, and have by far the highest ratio of dark to luminous matter. None of the models proposed to unravel their origin can simultaneously explain their exceptional dark matter content and their proximity to a much larger galaxy. Here we report simulations showing that the progenitors of these galaxies were probably gas-dominated dwarf galaxies that became satellites of a larger galaxy earlier than the other dwarf spheroidals. We find that a combination of tidal shocks and ram pressure swept away the entire gas content of such progenitors about ten billion years ago because heating by the cosmic ultraviolet background kept the gas loosely bound: a tiny stellar component embedded in a relatively massive dark halo survived until today. All luminous galaxies should be surrounded by a few extremely dark-matter-dominated dwarf spheroidal satellites, and these should have the shortest orbital periods among dwarf spheroidals because they were accreted early.  相似文献   

3.
Kalirai JS 《Nature》2012,486(7401):90-92
The Milky Way galaxy has several components, such as the bulge, disk and halo. Unravelling the assembly history of these stellar populations is often restricted because of difficulties in measuring accurate ages for low-mass, hydrogen-burning stars. Unlike these progenitors, white dwarf stars, the 'cinders' of stellar evolution, are remarkably simple objects and their fundamental properties can be measured with little ambiguity. Here I report observations of newly formed white dwarf stars in the halo of the Milky Way, and a separate analysis of archival data in the well studied 12.5-billion-year-old globular cluster Messier 4. I measure the mass distribution of the remnant stars and invert the stellar evolution process to develop a mathematical relation that links this final stellar mass to the mass of their immediate progenitors, and therefore to the age of the parent population. By applying this technique to a small sample of four nearby and kinematically confirmed halo white dwarf stars, I calculate the age of local field halo stars to be 11.4?±?0.7 billion years. The oldest globular clusters formed 13.5?billion years ago. Future observations of newly formed white dwarf stars in the halo could be used to reduce the uncertainty, and to probe relative differences between the formation times of the youngest globular clusters and the inner halo.  相似文献   

4.
The unusual morphology of the Andromeda galaxy (Messier 31, the closest spiral galaxy to the Milky Way) has long been an enigma. Although regarded for decades as showing little evidence of a violent history, M31 has a well-known outer ring of star formation at a radius of ten kiloparsecs whose centre is offset from the galaxy nucleus. In addition, the outer galaxy disk is warped, as seen at both optical and radio wavelengths. The halo contains numerous loops and ripples. Here we report the presence of a second, inner dust ring with projected dimensions of 1.5 x 1 kiloparsecs and offset by about half a kiloparsec from the centre of the galaxy (based upon an analysis of previously-obtained data). The two rings appear to be density waves propagating in the disk. Numerical simulations indicate that both rings result from a companion galaxy plunging through the centre of the disk of M31. The most likely interloper is M32. Head-on collisions between galaxies are rare, but it appears nonetheless that one took place 210 million years ago in our Local Group of galaxies.  相似文献   

5.
White dwarfs are the remnant cores of stars that initially had masses of less than 8 solar masses. They cool gradually over billions of years, and have been suggested to make up much of the 'dark matter' in the halo of the Milky Way. But extremely cool white dwarfs have proved difficult to detect, owing to both their faintness and their anticipated similarity in colour to other classes of dwarf stars. Recent improved models indicate that white dwarfs are much more blue than previously supposed, suggesting that the earlier searches may have been looking for the wrong kinds of objects. Here we report an infrared spectrum of an extremely cool white dwarf that is consistent with the new models. We determine the star's temperature to be 3,500 +/- 200 K, making it the coolest known white dwarf. The kinematics of this star indicate that it is in the halo of the Milky Way, and the density of such objects implied by the serendipitous discovery of this star is consistent with white dwarfs dominating the dark matter in the halo.  相似文献   

6.
Braine J  Lisenfeld U  Duc PA  Leon S  Due PA 《Nature》2000,403(6772):867-869
In many gravitational interactions between galaxies, gas and stars that have been torn from the precursor galaxies can collect in tidal 'tails'. Star formation begins anew in some of these regions, producing tidal dwarf galaxies. Observations of these new galaxies provides insight into processes relevant to galaxy formation more generally, because the timescale of the interaction is well defined. But tracking the star formation process has hitherto been difficult because the tidal dwarf galaxies with young stars showed no evidence of the molecular gas out of which those young stars formed. Here we report the discovery of molecular hydrogen (traced by carbon monoxide emission) in two tidal dwarf galaxies. In both cases, the concentration of molecular gas peaks at the same location as the maximum in atomic-hydrogen density, unlike the situation in most gas-rich galaxies. We infer from this that the molecular gas formed from the atomic hydrogen, rather than being torn in molecular form from the interacting galaxies. Star formation in the tidal dwarf galaxies therefore appears to mimic the process in normal spiral galaxies like our own.  相似文献   

7.
West MJ  Côté P  Marzke RO  Jordán A 《Nature》2004,427(6969):31-35
Nearly a century after the true nature of galaxies as distant 'island universes' was established, their origin and evolution remain great unsolved problems of modern astrophysics. One of the most promising ways to investigate galaxy formation is to study the ubiquitous globular star clusters that surround most galaxies. Globular clusters are compact groups of up to a few million stars. They generally formed early in the history of the Universe, but have survived the interactions and mergers that alter substantially their parent galaxies. Recent advances in our understanding of the globular cluster systems of the Milky Way and other galaxies point to a complex picture of galaxy genesis driven by cannibalism, collisions, bursts of star formation and other tumultuous events.  相似文献   

8.
The Milky Way has at least twenty-three known satellite galaxies that shine with luminosities ranging from about a thousand to a billion times that of the Sun. Half of these galaxies were discovered in the past few years in the Sloan Digital Sky Survey, and they are among the least luminous galaxies in the known Universe. A determination of the mass of these galaxies provides a test of galaxy formation at the smallest scales and probes the nature of the dark matter that dominates the mass density of the Universe. Here we use new measurements of the velocities of the stars in these galaxies to show that they are consistent with them having a common mass of about 10(7) within their central 300 parsecs. This result demonstrates that the faintest of the Milky Way satellites are the most dark-matter-dominated galaxies known, and could be a hint of a new scale in galaxy formation or a characteristic scale for the clustering of dark matter.  相似文献   

9.
Stark DP  Swinbank AM  Ellis RS  Dye S  Smail IR  Richard J 《Nature》2008,455(7214):775-777
Recent studies of galaxies approximately 2-3 Gyr after the Big Bang have revealed large, rotating disks, similar to those of galaxies today. The existence of well-ordered rotation in galaxies during this peak epoch of cosmic star formation indicates that gas accretion is likely to be the dominant mode by which galaxies grow, because major mergers of galaxies would completely disrupt the observed velocity fields. But poor spatial resolution and sensitivity have hampered this interpretation; such studies have been limited to the largest and most luminous galaxies, which may have fundamentally different modes of assembly from those of more typical galaxies (which are thought to grow into the spheroidal components at the centres of galaxies similar to the Milky Way). Here we report observations of a typical star-forming galaxy at z = 3.07, with a linear resolution of approximately 100 parsecs. We find a well-ordered compact source in which molecular gas is being converted efficiently into stars, likely to be assembling a spheroidal bulge similar to those seen in spiral galaxies at the present day. The presence of undisrupted rotation may indicate that galaxies such as the Milky Way gain much of their mass by accretion rather than major mergers.  相似文献   

10.
Models of the chemical evolution of the Milky Way suggest that the observed abundances of elements heavier than helium ('metals') require a continuous infall of gas with metallicity (metal abundance) about 0.1 times the solar value. An infall rate integrated over the entire disk of the Milky Way of approximately 1 solar mass per year can solve the 'G-dwarf problem'--the observational fact that the metallicities of most long-lived stars near the Sun lie in a relatively narrow range. This infall dilutes the enrichment arising from the production of heavy elements in stars, and thereby prevents the metallicity of the interstellar medium from increasing steadily with time. However, in other spiral galaxies, the low-metallicity gas needed to provide this infall has been observed only in associated dwarf galaxies and in the extreme outer disk of the Milky Way. In the distant Universe, low-metallicity hydrogen clouds (known as 'damped Ly alpha absorbers') are sometimes seen near galaxies. Here we report a metallicity of 0.09 times solar for a massive cloud that is falling into the disk of the Milky Way. The mass flow associated with this cloud represents an infall per unit area of about the theoretically expected rate, and approximately 0.1-0.2 times the amount required for the whole Galaxy.  相似文献   

11.
The mass function of dwarf satellite galaxies that are observed around Local Group galaxies differs substantially from simulations based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard. A massive dark satellite in an early-type lens galaxy at a redshift of 0.222 was recently found using a method based on gravitational lensing, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low-mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a (1.9?±?0.1)?×?10(8) M dark satellite galaxy in the Einstein ring system JVAS B1938+666 (ref. 11) at a redshift of 0.881, where M denotes the solar mass. This satellite galaxy has a mass similar to that of the Sagittarius galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be 1.1(+0.6)(-0.4), with an average mass fraction of 3.3(+3.6)(-1.8) per cent, by combining data on both of these recently discovered galaxies. Our results are consistent with the predictions from cold dark matter simulations at the 95 per cent confidence level, and therefore agree with the view that galaxies formed hierarchically in a Universe composed of cold dark matter.  相似文献   

12.
Like many galaxies of its size, the Milky Way is a disk with prominent spiral arms rooted in a central bar, although our knowledge of its structure and origin is incomplete. Traditional attempts to understand our Galaxy's morphology assume that it has been unperturbed by major external forces. Here we report simulations of the response of the Milky Way to the infall of the Sagittarius dwarf galaxy (Sgr), which results in the formation of spiral arms, influences the central bar and produces a flared outer disk. Two ring-like wrappings emerge towards the Galactic anti-Centre in our model that are reminiscent of the low-latitude arcs observed in the same area of the Milky Way. Previous models have focused on Sgr itself to reproduce the dwarf's orbital history and place associated constraints on the shape of the Milky Way gravitational potential, treating the Sgr impact event as a trivial influence on the Galactic disk. Our results show that the Milky Way's morphology is not purely secular in origin and that low-mass minor mergers predicted to be common throughout the Universe probably have a similarly important role in shaping galactic structure.  相似文献   

13.
Prochaska JX  Howk JC  Wolfe AM 《Nature》2003,423(6935):57-59
The discovery of metal-poor stars (where metal is any element more massive than helium) has enabled astronomers to probe the chemical enrichment history of the Milky Way. More recently, element abundances in gas inside high-redshift galaxies has been probed through the absorption lines imprinted on the spectra of background quasars, but these have typically yielded measurements of only a few elements. Furthermore, interpretation of these abundances is complicated by the fact that differential incorporation of metals into dust can produce an abundance pattern similar to that expected from nucleosynthesis by massive stars. Here we report the observation of over 25 elements in a galaxy at redshift z = 2.626. With these data, we can examine nucleosynthetic processes independent of the uncertainty arising from depletion. We find that the galaxy was enriched mainly by massive stars (M > 15 solar masses) and propose that it is the progenitor of a massive elliptical galaxy. The detailed abundance patterns suggest that boron is produced through processes that act independently of metallicity, and may require alternative mechanisms for the nucleosynthesis of germanium.  相似文献   

14.
Rich RM  Collins ML  Black CM  Longstaff FA  Koch A  Benson A  Reitzel DB 《Nature》2012,482(7384):192-194
NGC 4449 is a nearby Magellanic irregular starburst galaxy with a B-band absolute magnitude of -18 and a prominent, massive, intermediate-age nucleus at a distance from Earth of 3.8?megaparsecs (ref. 3). It is wreathed in an extraordinary neutral hydrogen (H?I) complex, which includes rings, shells and a counter-rotating core, spanning ~90?kiloparsecs (kpc; refs 1, 4). NGC 4449 is relatively isolated, although an interaction with its nearest known companion--the galaxy DDO 125, some 40?kpc to the south--has been proposed as being responsible for the complexity of its H?I structure. Here we report the presence of a dwarf galaxy companion to NGC 4449, namely NGC 4449B. This companion has a V-band absolute magnitude of -13.4 and a half-light radius of 2.7?kpc, with a full extent of around 8?kpc. It is in a transient stage of tidal disruption, similar to that of the Sagittarius dwarf near the Milky Way. NGC 4449B exhibits a striking S-shaped morphology that has been predicted for disrupting galaxies but has hitherto been seen only in a dissolving globular cluster. We also detect an additional arc or disk ripple embedded in a two-component stellar halo, including a component extending twice as far as previously known, to about 20?kpc from the galaxy's centre.  相似文献   

15.
van Dokkum PG  Conroy C 《Nature》2010,468(7326):940-942
The stellar initial mass function (IMF) describes the mass distribution of stars at the time of their formation and is of fundamental importance for many areas of astrophysics. The IMF is reasonably well constrained in the disk of the Milky Way but we have very little direct information on the form of the IMF in other galaxies and at earlier cosmic epochs. Here we report observations of the Na?(I) doublet and the Wing-Ford molecular FeH band in the spectra of elliptical galaxies. These lines are strong in stars with masses less than 0.3M(⊙) (where M(⊙) is the mass of the Sun) and are weak or absent in all other types of stars. We unambiguously detect both signatures, consistent with previous studies that were based on data of lower signal-to-noise ratio. The direct detection of the light of low-mass stars implies that they are very abundant in elliptical galaxies, making up over 80% of the total number of stars and contributing more than 60% of the total stellar mass. We infer that the IMF in massive star-forming galaxies in the early Universe produced many more low-mass stars than the IMF in the Milky Way disk, and was probably slightly steeper than the Salpeter form in the mass range 0.1M(⊙) to 1M(⊙).  相似文献   

16.
Reines AE  Sivakoff GR  Johnson KE  Brogan CL 《Nature》2011,470(7332):66-68
Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize?2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize?2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize?2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.  相似文献   

17.
Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars, which depends on the present number of each type of star in the galaxy. The present number depends on the stellar initial mass function (IMF), which describes the distribution of stellar masses when the population formed, and knowledge of it is critical to almost every aspect of galaxy evolution. More than 50 years after the first IMF determination, no consensus has emerged on whether it is universal among different types of galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot both be universal, but they could not convincingly discriminate between the two possibilities. Only recently were indications found that massive elliptical galaxies may not have the same IMF as the Milky Way. Here we report a study of the two-dimensional stellar kinematics for the large representative ATLAS(3D) sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass, using detailed dynamical models. We find a strong systematic variation in IMF in early-type galaxies as a function of their stellar mass-to-light ratios, producing differences of a factor of up to three in galactic stellar mass. This implies that a galaxy's IMF depends intimately on the galaxy's formation history.  相似文献   

18.
Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.  相似文献   

19.
Supernova explosions in the Universe   总被引:1,自引:0,他引:1  
Burrows A 《Nature》2000,403(6771):727-733
During the lifetime of our Milky Way galaxy, there have been something like 100 million supernova explosions, which have enriched the Galaxy with the oxygen we breathe, the iron in our cars, the calcium in our bones and the silicon in the rocks beneath our feet. These exploding stars also influence the birth of new stars and are the source of the energetic cosmic rays that irradiate us on the Earth. The prodigious amount of energy (approximately 10(51), or approximately 2.5 x 10(28) megatonnes of TNT equivalent) and momentum associated with each supernova may even have helped to shape galaxies as they formed in the early Universe. Supernovae are now being used to measure the geometry of the Universe, and have recently been implicated in the decades-old mystery of the origin of the gamma-ray bursts. Together with major conceptual advances in our theoretical understanding of supernovae, these developments have made supernovae the centre of attention in astrophysics.  相似文献   

20.
The halo of the Milky Way provides unique elemental abundance and kinematic information on the first objects to form in the Universe, and this information can be used to tightly constrain models of galaxy formation and evolution. Although the halo was once considered a single component, evidence for its dichotomy has slowly emerged in recent years from inspection of small samples of halo objects. Here we show that the halo is indeed clearly divisible into two broadly overlapping structural components--an inner and an outer halo--that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium). The inner halo has a modest net prograde rotation, whereas the outer halo exhibits a net retrograde rotation and a peak metallicity one-third that of the inner halo. These properties indicate that the individual halo components probably formed in fundamentally different ways, through successive dissipational (inner) and dissipationless (outer) mergers and tidal disruption of proto-Galactic clumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号