首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为判断和控制组合梁的疲劳破坏形态,分析了组合梁的截面尺寸、混凝土强度等级、剪力连接程度以及荷载幅值等参数对应力幅指标λ的影响,结果表明:并非所有不完全剪力连接组合梁都只发生栓钉剪坏的疲劳破坏,有时剪力连接程度γ很低的组合梁也可能存在钢梁拉裂的疲劳破坏形态。而且由于完全剪力连接组合梁的计算应力幅指标较大,也可能导致发生栓钉剪坏的疲劳破坏。组合梁的疲劳破坏形态取决于计算应力幅指标与钢梁各个构造细节相应的界限应力幅指标[λ]的相对大小。  相似文献   

2.
为了研究部分抗剪连接钢-混凝土组合梁在高疲劳应力幅下的疲劳性能,对5根组合梁试件开展了等幅疲劳加载试验,以研究栓钉直径、抗剪连接程度和疲劳应力幅对组合梁受力性能的影响。研究结果表明:当组合梁中的钢梁承受200 MPa疲劳应力幅作用时,按照EC3规范计算所得的组合梁疲劳细节的疲劳寿命偏于保守;在经历最初的若干万次疲劳加载后,组合梁的跨中残余挠度可达初始跨中最大挠度的26.0%;100万次疲劳加载后,疲劳损伤引起的组合梁跨中附加挠度可达初始跨中最大挠度的25.0%;与完全抗剪连接组合梁相比,部分抗剪连接组合梁的疲劳受力性能并未表现出显著的差异;在正弯矩作用下,组合梁中的混凝土板按照静力计算方法配筋满足疲劳设计的要求。  相似文献   

3.
基于8个组合梁试件的疲劳试验结果,采用有限元计算与名义应力法相结合的方法,提出用于模拟滑移和疲劳破坏过程的精细有限元模型和计算方法.研究了混凝土中不同橡胶掺量对组合梁极限承载力、最大滑移、栓钉应力及破坏特征的影响,得到相应的应力-疲劳寿命曲线.结果表明,简支组合梁的疲劳破坏首先发生在端部栓钉,破坏过程为栓钉依次断裂.虽然疲劳断裂为脆性破坏,但组合梁在疲劳荷载作用下的整体破坏具有一定的延性.使用弹性混凝土代替普通混凝土后,组合梁的极限承载力和刚度略有降低,但延性有所提高;当橡胶掺量为5%,10%和15%时,疲劳寿命分别提高约15%,64%和125%.基于非线性数值分析得到的组合梁极限承载力和疲劳寿命与试验所测结果吻合较好,为组合梁的抗疲劳设计提供了参考.  相似文献   

4.
为研究钢-混组合梁在疲劳荷载下剩余承载力退化规律,引入考虑栓钉初始缺陷的基于断裂力学的承载力退化模型及经典钢梁、混凝土板承载力退化模型,并通过考虑不同疲劳荷载后退化为非完全抗剪结构的剩余极限承载力计算模型,建立了组合梁在常幅疲劳荷载下的剩余承载力预测计算方法,通过典型5组试验梁疲劳试验数据的对比验证了所提出的预测方法的有效性,在此基础上对关键影响因素进行了参数分析.结果表明:本文提出的承载力计算方法具有较高的准确性,误差控制在8%以内;疲劳加载下,组合梁各构件强度以不同速率发生退化,栓钉最快,钢梁次之,混凝土板最慢,且加载前期组合梁承载力退化程度由钢梁主导,后期由栓钉连接件主导;承载力退化速率随着加载次数的增加而不断增加,前期增长较缓,基本呈线性分布,后期增加迅速,呈指数型分布,其后期承载力衰减占总衰减的比例可高达70%以上;栓钉间距(抗剪连接度)、栓钉初始缺陷、荷载幅值是控制疲劳承载力退化的重要因素,需在工程设计中加以控制以满足桥梁正常运营.  相似文献   

5.
钢-混凝土组合梁在桥梁结构中应用广泛.车辆荷载会造成组合梁疲劳损伤的不断累积,从而对结构安全产生不利影响.为了研究疲劳损伤对钢-混凝土组合梁受力性能的影响,对7根组合梁试件开展了单调静力加载试验,其中5根组合梁试件在开展静力试验前经历了100万次的等幅疲劳加载.试验结果表明:在经历100万次的疲劳加载后,疲劳损伤会导致组合梁的极限变形能力降低,但组合梁的延性系数仍大于4.6,最终破坏形态均属于弯曲破坏;疲劳加载使钢材发生了强化效应,组合梁的屈服荷载均有所提高;部分抗剪连接组合梁的极限承载能力普遍降低,最大降幅约为初始极限承载力的7.3%;在抗剪连接程度相同的情况下,采用直径13或16 mm栓钉对组合梁的极限承载力无明显影响.  相似文献   

6.
对钢与普通混凝土组合梁的栓钉连接件和钢与钢纤维混凝土组合梁的栓钉连接件进行推出试验.研究钢与钢纤维混凝土组合梁栓钉连接件的抗剪性能,并和钢与普通混凝土组合梁的栓钉连接件的抗剪性能进行对比.通过比较分析发现:钢与钢纤维混凝土组合梁栓钉连接件的抗剪承载力高于钢与普通混凝土组合梁栓钉连接件的抗剪承载力;钢与钢纤维混凝土组合梁栓钉连接件的极限承载力对应的滑移值明显大于钢与普通混凝土组合梁栓钉连接件的极限承载力对应的滑移值.对钢与钢纤维混凝土组合梁栓钉连接件抗剪承载能力的理论计算提出建议.  相似文献   

7.
目的研究开孔波折板连接的弹性混凝土-钢组合梁的静力力学性能和疲劳性能,为提高组合梁的疲劳性能提供依据.方法通过有限元软件ABAQUS对4组不同参数的开孔波折板连接件的静力推出试件进行数值模拟,探讨不同参数对波折板连接件抗剪承载力的影响,结合荷载-滑移曲线得出波折板连接件抗剪承载力近似公式.在静力分析的基础上,考虑波折板单位长度抗剪承载力,采用局部应力法并结合Goodman平均应力修正曲线对不同橡胶掺量的弹性混凝土组合梁进行疲劳寿命分析.结果随着橡胶掺量的增加,开孔波折板连接的弹性混凝土与钢组合梁静力承载力下降、滑移增大、疲劳寿命总体提高,其中10%橡胶掺量的组合梁的疲劳寿命约为等强度普通混凝土-钢组合梁疲劳寿命的2.1倍.结论开孔波折板连接的组合梁承载力高、整体连接性能强;混凝土板中掺入一定橡胶能有效地提高组合梁的疲劳寿命.  相似文献   

8.
为研究橡胶集料混凝土-钢组合梁的疲劳性能,对6个试件进行疲劳试验.试验考虑了橡胶集料混凝土、剪力连接程度、栓钉直径及截面尺寸对组合梁疲劳寿命、损伤累积及破坏模式的影响.试验测试并分析了组合梁在不同荷载循环次数下的混凝土应变、残余滑移、残余挠度、滑移刚度及弯曲刚度.试验结果表明:部分剪力连接的组合梁在疲劳过程中不符合平截面假定;组合梁的疲劳破坏模式为剪跨区栓钉剪断,破坏具有较大的延性;橡胶集料混凝土能有效减小裂缝宽度,明显提高疲劳寿命,并增大残余滑移,表现出更好的延性;增大剪力连接程度可提高组合梁的疲劳寿命,并降低刚度退化作用;较大的栓钉直径使组合梁疲劳性能降低,并表现出较大的塑性.研究成果可为橡胶集料混凝土在组合梁中的应用提供依据.  相似文献   

9.
通过制作了12个推出试件,研究了栓钉连接件在不同工作环境下的抗剪承载力及其抗滑移性能;并对不同孔型、不同抗剪连接度的3根钢-混凝土预制板组合梁进行了静力性能试验,对比分析了钢-混凝土预制板组合梁的荷载-滑移、荷载-挠度、荷载-组合梁全截面应变及截面整体工作性能.结果表明:预留后灌孔为方孔推出试件的栓钉承载力比圆孔好;孔内填充混凝土强度对栓钉承载力影响很大,孔内混凝土强度高则栓钉承载力好;3根试验梁的截面应变分布满足平截面假定的要求,且均为弯曲破坏形式;组合梁具有良好的组合效应及受弯性能,完全抗剪连接的组合梁与部分抗剪的承载力接近,但完全抗剪组合梁钢梁与混凝土板界面间得滑移值明显小于后者.本文结果将增进对钢-混凝土预制板组合梁的理解和认识,为今后改进该类型梁工程设计提供有价值的参考.  相似文献   

10.
钢-混凝土组合梁纵向抗剪非线性分析   总被引:2,自引:0,他引:2  
在钢-混凝土组合梁中,栓钉传递的剪力作用在混凝土板上,当横向钢筋配筋率低于一定值时,混凝土板会发生纵向剪切破坏,从而会导致组合梁的极限承载力降低,不能充分发挥组合梁的优势.采用了ANSYS软件对组合梁进行了非线性有限元分析,并结合试验结果探讨了横向钢筋对组合梁极限受弯承载力的影响,同时对组合梁的挠度及滑移进行了分析.计算结果表明,为保证组合梁混凝土板不发生纵向抗剪破坏,横向钢筋配筋率应不小于0.6%,利用给出的模型可反映出栓钉对混凝土板的作用.  相似文献   

11.
基于3根模型梁试件的单调静力试验,对体外预应力钢-混凝土组合梁的受力性能进行了研究.研究表明:施加体外预应力可以有效提高组合梁的抗弯承载力,但试件的延性有所降低;试件纯弯段截面应变分布符合平截面假定;增大栓钉间距可以提高试件的极限变形能力,但对其抗弯承载力的影响不大;试件的抗剪连接程度越低,达到极限荷载时栓钉滑移值越大.结合试验并通过有限元建模,分析了混凝土强度等级、有效预应力、预应力筋线型、栓钉间距等对体外预应力组合梁受力性能的影响.最后,在考虑了预应力筋作用的基础上,提出了体外预应力组合梁抗弯承载力的简化计算方法,该方法可为体外预应力组合梁的设计计算提供参考.  相似文献   

12.
周阳  蒲黔辉  施洲  杨华平 《科学技术与工程》2022,22(29):13058-13065
为研究复合剪力连接件群钢-混结合段的力学性能,以我国首座铁路混合梁斜拉桥为研究背景,通过数值模拟与模型试验相结合的方法研究了钢-混结合段及其复合剪力键群的静力和疲劳性能。结果表明:需注重钢-混结合段的构造细节处理以避免产生局部应力集中现象;剪力钉较PBL剪力键起主要传剪作用,与复合剪力键群形式相比,只采用PBL剪力键传剪会增大承压板传力负荷;底板剪力钉受形式与推出试验结果一致,由于混凝土浇筑质量等原因,顶板剪力钉受力形式与推出试验有一定差异;在疲劳试验后,受力较大的底板剪力钉根部应力水平增大较多,进入弹塑性受力状态,受力较大的PBL剪力键应力水平有所增大,但整体应力水平较低。可见采用复合剪力键形式的钢-混结合段受力合理,其设计可以为其他同类工程提供参考。  相似文献   

13.
武汉二七长江大桥为三塔混合梁斜拉桥,为验证其主梁钢混结合段构造的合理性,设计并制作了几何缩尺比为1∶3的主梁钢混结合段试验模型.对模型进行了试验研究,分别考察了在正常使用荷载作用下、设计极限荷载作用下及1.7倍设计极限荷载作用下钢混结合段钢构件与混凝土构件的应力分布情况及钢混结合段的承载性能,基于对钢混结合段钢板与混凝土之间2种不同连接方式的假设,分别建立了相应的有限元计算模型,研究2种不同的传力机理.模型试验和有限元计算分析表明:武汉二七长江大桥主梁钢混结合段的承载能力满足设计要求,剪力钉的剪切刚度对钢混结合段的受力与传力影响较大.  相似文献   

14.
应用大型空间有限元软件ABAQUS对某大桥混合梁钢—混接合段模型进行分析,探讨了接合面上接触摩擦作用对接合面受力的影响以及剪力钉受剪规律.结果表明:钢-混接合面位置、构造形式、传力均较合理;考虑接触摩擦会降低剪力钉受到的剪力,但不影响钢和混凝土箱梁以及剪力钉群的内力分布规律;接合面的剪力钉离中和轴越远受到的竖向剪力越大,实际应用中应加以重视.  相似文献   

15.
为合理方便地计算支座约束影响下连续组合梁的徐变效应,预估组合梁长期力学性能,基于力法基本原理和混凝土徐变本构方程,分解了连续组合梁截面应力重分布和结构支座约束内力重分布的耦合关系,推导了连续组合梁在支座快速约束和缓慢约束两种情况下的徐变次内力解析公式,并通过理论和数值方法对算例进行分析.计算表明:徐变对支座沉降约束起有利作用,组合梁徐变次弯矩受截面内部应力重分布影响,受重分布系数控制,随组合梁截面混凝土与钢梁的刚度比变化,内部应力和外部内力相互影响,且与徐变系数和老化系数相关.采用该方法可较方便地计算连续组合梁在支座约束变化下的内力,公式推导建立在清晰的力学基础上,计算结果能较有效地反映组合梁力学特征,是对组合梁长期力学性能计算方法的一种有效补充.   相似文献   

16.
钢-混组合梁桥中桥面板与钢主梁通过剪力键连接,混凝土板徐变效应会对剪力键内力产生影响。为探究这种影响,本文以某座钢-混组合曲线梁桥为背景,使用ANSYS建立精细化实体有限元模型,按金属蠕变原理模拟混凝土板徐变效应,在考虑施工阶段的基础上研究混凝土板徐变效应下剪力钉的力学行为。研究表明:钢纵梁处剪力钉横桥向徐变内力约为顺桥向2.0倍,但徐变内力变化趋势均相同即每跨跨中向两侧支点逐渐递增,徐变内力极值均出现在支点湿接缝附近剪力钉上。钢横梁剪力钉横桥向、顺桥向内徐变内力均由横截面中线向两侧逐渐增加,但受“弯扭耦合”影响,横梁内、外侧剪力钉徐变内力相反。徐变影响下全桥剪力钉顺桥向徐变滑移分布较横桥向更加均匀,绝大多数剪力钉顺桥向徐变滑移量仅为横桥向的30%~50%。混凝土板徐变效应对剪力钉内力影响随时间的增加而减弱,内力影响最大是成桥初期3个月;增加混凝土板预制龄期可显著降低成桥时剪力钉的徐变内力,推荐采用龄期为180d的桥面板,并计入10年徐变效应可满足工程要求。  相似文献   

17.
探究剪力连接程度对预应力钢—混凝土组合梁中混凝土和钢梁的界面的剪切滑移、截面刚度、挠度变形、极限强度等受力性能的影响 .试验选用栓钉剪力连接件 ,设计 3根不同剪力连接程度的预应力组合连续梁 ,采用跨中加载集中力 ,探究预应力组合梁静载受力全过程受力特性 .  相似文献   

18.
为了合理利用在装配式钢结构建筑中应用广泛的钢筋桁架楼承板,将钢筋桁架的下弦钢筋焊接于U形钢梁的上翼缘作为一种新型的抗剪连接件,设计了4根采用钢筋桁架、角钢、栓钉及其组合抗剪连接方式的简支U形钢-混凝土组合梁,并对其进行了静力试验研究和有限元分析,考察了不同抗剪连接方式对其正截面受弯性能的影响.试验结果表明:试件的破坏形态为整体弯曲破坏和端部滑移破坏;仅采用钢筋桁架作为抗剪连接件的试件不能达到完全抗剪连接,可再配置适量栓钉以提高其组合作用;采用钢筋桁架与栓钉作为组合抗剪连接方式的试件的抗剪连接性能优于采用钢筋桁架与角钢作为组合抗剪连接方式的试件.同时运用ABAQUS对试件进行了有限元分析,有限元分析的受弯承载力值与试验值吻合较好.最后在试验研究和有限元分析的基础上,基于全截面塑性理论,提出了完全抗剪连接的钢筋桁架楼承板-U形钢组合梁在正弯矩作用下的受弯承载力计算公式.  相似文献   

19.
钢-混凝土组合楼盖空间作用的试验研究   总被引:3,自引:0,他引:3  
为了研究钢混凝土组合楼盖的空间作用,采用伪静力试验方法对按1/4比例缩小的单跨、4层、4柱距的钢框架、带水平支撑钢框架、组合框架以及带水平支撑组合框架模型进行了弹性比较试验,并对组合框架结构模型进行了破坏试验。试验结果表明,钢混凝土组合楼板能够满足水平荷载作用下协同框架结构整体受力的要求。在弹塑性阶段,混凝土楼板和钢梁之间仍然能够通过栓钉共同工作,有效地减小水平荷载作用下框架结构的侧向位移。试验验证了组合楼盖传递水平荷载的有效性,为进一步的理论研究提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号