首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Caenorhabditis elegans gene unc-22 encodes a very large muscle protein, called twitchin, which consists of a protein kinase domain and several copies of two short motifs. The sequence of twitchin has unexpected similarities to the sequences of proteins of the immunoglobulin superfamily, cell adhesion molecules and vertebrate muscle proteins, including myosin light-chain kinase. These homologies, together with results from earlier genetic and molecular analyses, indicate that twitchin is involved in a novel mechanism of myosin regulation.  相似文献   

2.
3.
Myosin VI is an actin-based motor that moves backwards.   总被引:15,自引:0,他引:15  
Myosins and kinesins are molecular motors that hydrolyse ATP to track along actin filaments and microtubules, respectively. Although the kinesin family includes motors that move towards either the plus or minus ends of microtubules, all characterized myosin motors move towards the barbed (+) end of actin filaments. Crystal structures of myosin II (refs 3-6) have shown that small movements within the myosin motor core are transmitted through the 'converter domain' to a 'lever arm' consisting of a light-chain-binding helix and associated light chains. The lever arm further amplifies the motions of the converter domain into large directed movements. Here we report that myosin VI, an unconventional myosin, moves towards the pointed (-) end of actin. We visualized the myosin VI construct bound to actin using cryo-electron microscopy and image analysis, and found that an ADP-mediated conformational change in the domain distal to the motor, a structure likely to be the effective lever arm, is in the opposite direction to that observed for other myosins. Thus, it appears that myosin VI achieves reverse-direction movement by rotating its lever arm in the opposite direction to conventional myosin lever arm movement.  相似文献   

4.
Tissue-specific expression of rat myosin light-chain 2 gene in transgenic mice   总被引:24,自引:0,他引:24  
M Shani 《Nature》1985,314(6008):283-286
One approach to determining how the differential expression of specific genes is regulated in higher organisms is to introduce cloned copies of the genes (or parts of the genes) into the genomes of individual organisms from the very beginning of their development. The way in which the exogenous genetic information behaves during the development of the experimental organisms can then provide a means of defining the DNA sequences that restrict the expression of the gene to specific cell types and times of development. So far, several different genes have been introduced into the genomes of mice, but in only a few cases have the exogenous genes retained the tissue specificity of expression of the equivalent endogenous genes. I report here that in two out of three 'transgenic' mice carrying copies of the rat gene for skeletal muscle myosin light chain 2, the exogenous gene is expressed specifically in skeletal muscle cells. The sequences contained in the cloned copy of the myosin light-chain 2 gene used in these experiments are thus sufficient to confer a tissue-specific pattern of expression.  相似文献   

5.
M Irving  V Lombardi  G Piazzesi  M A Ferenczi 《Nature》1992,357(6374):156-158
Motor proteins such as myosin, dynein and kinesin use the free energy of ATP hydrolysis to produce force or motion, but despite recent progress their molecular mechanism is unknown. The best characterized system is the myosin motor which moves actin filaments in muscle. When an active muscle fibre is rapidly shortened the force first decreases, then partially recovers over the next few milliseconds. This elementary force-generating process is thought to be due to a structural 'working stroke' in the myosin head domain, although structural studies have not provided definitive support for this. X-ray diffraction has shown that shortening steps produce a large decrease in the intensity of the 14.5 nm reflection arising from the axial repeat of the myosin heads along the filaments. This was interpreted as a structural change at the end of the working stroke, but the techniques then available did not allow temporal resolution of the elementary force-generating process itself. Using improved measurement techniques, we show here that myosin heads move by about 10 nm with the same time course as the elementary force-generating process.  相似文献   

6.
A regular pattern of two types of 100-residue motif in the sequence of titin   总被引:19,自引:0,他引:19  
Titin is the largest polypeptide yet described (relative molecular mass approximately 3 x 10(6); refs 1, 2) and an abundant protein of striated muscle. Its molecules are string-like and in vivo span from the M to Z-lines. I-band regions of titin are thought to make elastic connections between the thick filament and the Z-line, thereby forming a third type of sarcomere filament. These would centre the A-band in the sarcomere and provide structural continuity in relaxed myofibrils. The A-band region of titin seems to be bound to the thick filament, where it has been proposed to act as a 'molecular ruler' regulating filament length and assembly. Here, we show that partial titin complementary DNAs encode a regular pattern of two types of 100-residue motif, each of which probably folds into a separate domain type. Such motifs are present in several evolutionarily divergent muscle proteins, all of which are likely to interact with myosin. One or both of the domain types is therefore likely to bind to myosin.  相似文献   

7.
Identification of myosin heavy chain in Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
F Z Watts  D M Miller  E Orr 《Nature》1985,316(6023):83-85
Motility in biological systems is expressed in a variety of ways, such as cytoplasmic streaming, cell shaping, nuclear migration and muscle contraction. These functions are thought to be mediated by structural proteins, for example, myosin, actin and tubulin. The involvement of myosin in muscle contraction is well documented and this protein is implicated in generating the cleavage forces during cytokinesis in some non-muscle cells. Here, we report the isolation of a protein similar to myosin as judged by its biochemical and immunological properties, from the yeast Saccharomyces cerevisiae. Parts of the protein have been conserved through evolution at the protein and DNA sequence levels. The presence of this protein in the region bordering mother cell and bud, as revealed by immunofluorescence, suggests that it is involved in cell division.  相似文献   

8.
T Itoh  M Ikebe  G J Kargacin  D J Hartshorne  B E Kemp  F S Fay 《Nature》1989,338(6211):164-167
Phosphorylation of myosin light chains by a calmodulin-myosin light-chain kinase (MLCK) pathway is considered to be responsible for coupling increased calcium concentration with contraction in smooth muscle. This simple view has, however, recently been questioned. To test this hypothesis directly, we microinjected individual smooth muscle cells with modulators of the MLCK pathway while measuring contraction and calcium-ion concentration. Injection of a constitutively active proteolyzed form of MLCK causes contraction but no change in calcium concentration. By contrast, injection of peptide inhibitors of MLCK blocks contraction in response to K+ depolarization, despite the fact that the change in calcium concentration in response to stimulation was enhanced over controls. These results provide a direct demonstration at the level of a single cell that activation of the calmodulin-MLCK pathway is both necessary and sufficient to trigger contraction of smooth muscle.  相似文献   

9.
Woodhead JL  Zhao FQ  Craig R  Egelman EH  Alamo L  Padrón R 《Nature》2005,436(7054):1195-1199
Contraction of muscle involves the cyclic interaction of myosin heads on the thick filaments with actin subunits in the thin filaments. Muscles relax when this interaction is blocked by molecular switches on either or both filaments. Insight into the relaxed (switched OFF) structure of myosin has come from electron microscopic studies of smooth muscle myosin molecules, which are regulated by phosphorylation. These studies suggest that the OFF state is achieved by an asymmetric, intramolecular interaction between the actin-binding region of one head and the converter region of the other, switching both heads off. Although this is a plausible model for relaxation based on isolated myosin molecules, it does not reveal whether this structure is present in native myosin filaments. Here we analyse the structure of a phosphorylation-regulated striated muscle thick filament using cryo-electron microscopy. Three-dimensional reconstruction and atomic fitting studies suggest that the 'interacting-head' structure is also present in the filament, and that it may underlie the relaxed state of thick filaments in both smooth and myosin-regulated striated muscles over a wide range of species.  相似文献   

10.
11.
R Cooke  M S Crowder  D D Thomas 《Nature》1982,300(5894):776-778
Electron micrographs showing different cross-bridge orientations in different states of muscle fibres, and X-ray diffraction patterns indicating axial cross-bridge disorder in contracting muscle first suggested that force generation in the contracting muscle involved a change in orientation of the myosin heads that form cross-bridges between thick and thin filaments. This has been supported by subsequent work; the myosin molecule has the required flexibility for changes in orientation. The orientation of muscle tryptophans and of probes attached to the myosin heads of permeable muscle fibres depends on the state of the muscle. Recently, fluorescence polarization fluctuations and time-resolved X-ray diffraction patterns have suggested that cross-bridges of a contracting muscle can rotate. We have used electron paramagnetic resonance (EPR) spectroscopy to monitor the orientation of spin labels attached specifically to a reactive sulphydryl on the myosin heads in glycerinated rabbit psoas skeletal muscle. Previously, it has been shown that the paramagnetic probes are highly ordered in rigor muscle, with a nearly random angular distribution in relaxed muscle. We show here that during the generation of isometric tension, approximately 80% of the probes display a random angular distribution as in relaxed muscle while the remaining 20% are highly oriented at the same angle as found in rigor muscle. These findings indicate that a domain of the myosin head does not change orientation during the power stroke of the contractile interaction.  相似文献   

12.
P Chaussepied  A A Kasprzak 《Nature》1989,342(6252):950-953
The two main proteins involved in muscular contraction and cell motility, myosin and actin, possess the intrinsic property of being able to form filamentous structures. This property poses a serious impediment to the study of their structures and interactions, and a considerable effort has thus been made to isolate their functional domains. The globular part of myosin, subfragment-1 (S1), which possesses ATPase and actin-binding sites as well as supporting the movement of actin filaments during in vitro assays, has been isolated. But because S1 is efficient in inducing actin polymerization, as is myosin, it has not been possible to prepare and characterize a complex of S1 with monomeric actin (G-actin). We have now used chromatographically purified proteins to show that only the S1 isoenzyme carrying the A1 light-chain subunit promotes actin polymerization. The other isoenzyme, S1 (A2), carrying the A2 light-chain subunit, binds to actin, forming a tight complex of G-actin and S1 in a 1:1 ratio. This new functional difference between myosin isoforms directly implicates the A1 light-chain in myosin-induced actin polymerization. Additionally, this finding should lead to the purification of the stable G-actin-S1 complex needed to resolve the structure and to understand the molecular dynamics of the actin-myosin system.  相似文献   

13.
S Tsukita  M Yano 《Nature》1985,317(6033):182-184
It is now widely accepted that the ATP-induced active sliding of adjacent thin and thick filaments mediated by myosin heads (cross-bridges) is responsible for muscle contraction. Despite intensive studies, the behaviour of the myosin heads during muscle contraction is still unclear. Recent progress in the rapid freezing electron microscope technique has greatly improved the temporal resolution of the images that can be obtained. Here, we report a new type of actomyosin structure captured by rapid freezing. We have analysed images from thin sections of freeze-substituted rabbit skeletal muscle rapidly frozen during isometric contraction. For comparison, we also studied relaxed and rigor muscles. Our results show that, during isometric contraction, most myosin heads are regularly arrayed along the helix of the actin filaments and that this actomyosin structure appears to be distinct from that observed in rigor muscle.  相似文献   

14.
J M Scholey  K A Taylor  J Kendrick-Jones 《Nature》1980,287(5779):233-235
The presence of actin and myosin in non-muscle cells suggests that they may be involved in a wide range of cellular contractile activities. The generally accepted view is that interaction between actin and myosin in these cells and in vertebrate smooth muscle, is regulated by the level of phosphorylation of the 20,000-molecular weight (MW) light chain. In the absence of calcium, this light chain is not phosphorylated and the myosin cannot interact with actin. Calcium activates a specific calmodulin-dependent kinase which phosphorylates the light chain, initiating actin-myosin interaction. Although most studies on the role of phosphorylation have concentration on the regulation of actin-activated myosin Mg-ATPase activity, phosphorylation of the light chain also seems to control the assembly of smooth muscle myosin into filaments. Using purified smooth muscle light chain kinase, we have confirmed this observation. We report here studies of myosins isolated from the two non-muscle sources, thymus cells and platelets. We observed that these myosins are assembled into filaments at physiological ionic strength and Mg-ATP concentrations, only when the 20,000-MW light chain is phosphorylated.  相似文献   

15.
Terrak M  Kerff F  Langsetmo K  Tao T  Dominguez R 《Nature》2004,429(6993):780-784
The coordinated and reciprocal action of serine/threonine (Ser/Thr) protein kinases and phosphatases produces transient phosphorylation, a fundamental regulatory mechanism for many biological processes. The human genome encodes a far greater number of Ser/Thr protein kinases than of phosphatases. Protein phosphatase 1 (PP1), in particular, is ubiquitously distributed and regulates a broad range of cellular functions, including glycogen metabolism, cell-cycle progression and muscle relaxation. PP1 has evolved effective catalytic machinery but lacks substrate specificity. Substrate specificity is conferred upon PP1 through interactions with a large number of regulatory subunits. The regulatory subunits are generally unrelated, but most possess the RVxF motif, a canonical PP1-binding sequence. Here we reveal the crystal structure at 2.7 A resolution of the complex between PP1 and a 34-kDa N-terminal domain of the myosin phosphatase targeting subunit MYPT1. MYPT1 is the protein that regulates PP1 function in smooth muscle relaxation. Structural elements amino- and carboxy-terminal to the RVxF motif of MYPT1 are positioned in a way that leads to a pronounced reshaping of the catalytic cleft of PP1, contributing to the increased myosin specificity of this complex. The structure has general implications for the control of PP1 activity by other regulatory subunits.  相似文献   

16.
Forkey JN  Quinlan ME  Shaw MA  Corrie JE  Goldman YE 《Nature》2003,422(6930):399-404
The structural change that generates force and motion in actomyosin motility has been proposed to be tilting of the myosin light chain domain, which serves as a lever arm. Several experimental approaches have provided support for the lever arm hypothesis; however, the extent and timing of tilting motions are not well defined in the motor protein complex of functioning actomyosin. Here we report three-dimensional measurements of the structural dynamics of the light chain domain of brain myosin V using a single-molecule fluorescence polarization technique that determines the orientation of individual protein domains with 20-40-ms time resolution. Single fluorescent calmodulin light chains tilted back and forth between two well-defined angles as the myosin molecule processively translocated along actin. The results provide evidence for lever arm rotation of the calmodulin-binding domain in myosin V, and support a 'hand-over-hand' mechanism for the translocation of double-headed myosin V molecules along actin filaments. The technique is applicable to the study of real-time structural changes in other biological systems.  相似文献   

17.
Clathrin self-assembly is mediated by a tandemly repeated superhelix.   总被引:12,自引:0,他引:12  
Clathrin is a triskelion-shaped cytoplasmic protein that polymerizes into a polyhedral lattice on intracellular membranes to form protein-coated membrane vesicles. Lattice formation induces the sorting of membrane proteins during endocytosis and organelle biogenesis by interacting with membrane-associated adaptor molecules. The clathrin triskelion is a trimer of heavy-chain subunits (1,675 residues), each binding a single light-chain subunit, in the hub domain (residues 1,074-1,675). Light chains negatively modulate polymerization so that intracellular clathrin assembly is adaptor-dependent. Here we report the atomic structure, to 2.6 A resolution, of hub residues 1,210-1,516 involved in mediating spontaneous clathrin heavy-chain polymerization and light-chain association. The hub fragment folds into an elongated coil of alpha-helices, and alignment analyses reveal a 145-residue motif that is repeated seven times along the filamentous leg and appears in other proteins involved in vacuolar protein sorting. The resulting model provides a three-dimensional framework for understanding clathrin heavy-chain self-assembly, light-chain binding and trimerization.  相似文献   

18.
Mechanism of force generation by myosin heads in skeletal muscle   总被引:1,自引:0,他引:1  
Muscles generate force and shortening in a cyclical interaction between the myosin head domains projecting from the myosin filaments and the adjacent actin filaments. Although many features of the dynamic performance of muscle are determined by the rates of attachment and detachment of myosin and actin, the primary event in force generation is thought to be a conformational change or 'working stroke' in the actin-bound myosin head. According to this hypothesis, the working stroke is much faster than attachment or detachment, but can be observed directly in the rapid force transients that follow step displacement of the filaments. Although many studies of the mechanism of muscle contraction have been based on this hypothesis, the alternative view-that the fast force transients are caused by fast components of attachment and detachment--has not been excluded definitively. Here we show that measurements of the axial motions of the myosin heads at ?ngstr?m resolution by a new X-ray interference technique rule out the rapid attachment/detachment hypothesis, and provide compelling support for the working stroke model of force generation.  相似文献   

19.
J A Spudich  S J Kron  M P Sheetz 《Nature》1985,315(6020):584-586
Although the biochemical properties of the actin/myosin interaction have been studied extensively using actin activation of myosin ATPase as an assay, until recently no well-defined assay has been available to measure the mechanical properties of ATP-dependent movement of myosin along actin filaments. The first direct measurements of the rate of myosin movement in vitro used a naturally occurring, biochemically ill-defined array of actin filaments from the alga Nitella. We report here the construction of an oriented array of filaments reconstituted from purified muscle actin and the use of this array in a biochemically defined quantitative assay for the directed movement of myosin-coated polystyrene beads. We demonstrate for the first time that actin alone, linked to a substratum by a protein anchor, is sufficient to support movement of myosin at rates consistent with the speeds of muscle contraction and other forms of cell motility.  相似文献   

20.
Calcium regulation of molluscan myosin ATPase in the absence of actin   总被引:1,自引:0,他引:1  
C Wells  C R Bagshaw 《Nature》1985,313(6004):696-697
In the myosin-linked regulatory mechanism typified by the molluscan scallop adductor muscle, contraction is controlled by Ca2+ binding to sites on the thick filament protein, myosin. The regulatory light chains of myosin heads are involved directly in this mechanism and early studies suggested that, in the absence of Ca2+, these subunits prevent the interaction of a myosin-adenosine nucleotide complex with the actin-containing thin filament. Subsequently, Ashiba et al. reported that the steady-state ATPase of molluscan myosin exhibits a limited degree of Ca2+ activation in the absence of actin. Recently, however, we have shown that steady-state ATPase activity in relaxing conditions is dominated by the unregulated molecules in the myosin preparation. Single-turnover kinetic methods are required to monitor the highly suppressed ATPase activity of the regulated population. Using the latter approach, we report here that scallop myosin ATPase is reduced about 100-fold on removal of Ca2+. The regulatory light chains maintain the relaxed state via conformational changes which suppress the product release steps, irrespective of the presence of actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号