首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
一个12GHz频段的开槽耦合微带天线阵的设计   总被引:2,自引:0,他引:2  
该文介绍了一个12GHz频段的开槽耦合微带天线阵设计.天线单元的耦合开槽采用"H"形状,各天线单元采取并列馈电方式.为增大天线的频带宽度,在印制有辐射单元和馈电线路的两个微带线路板之间加入了空气间隙.基于4×4单元天线阵仿真结果设计的8×8单元天线阵具有11.3~13.0GHz(S11<-10dB)的宽频带及22.3dBi的最大增益.  相似文献   

2.
利用光子晶体可以抑制基板表面波传播来提高天线增益的基本思想,改进设计了一种高增益多层耦合贴片天线.天线采用悬置耦合馈电方式,使馈电电路与辐射元分离,减小了馈电电路对辐射元性能的影响,从而便于在阵列中的应用,同时,通过在覆盖层加载基底钻孔型PBG结构,使单元天线增益可以达到11.54 dB,相比普通单层微带贴片天线,增益提高了8.68 dB.在此基础上,采用均匀等辐并联馈电网络,实际制作并测试了一个4×4元高增益微带贴片平面天线阵.测试结果表明:天线阵在12.0-13.0 GHz的频带内均满足驻波比小于2.0(VSWR<2.0);在中心频率12.5 GHz处,天线阵增益可以达到22.23 dB,副瓣电平小于-13.5 dB,相对于普通4×4元微带贴片天线阵,增益提高了近一倍,这样的结构在平面天线阵小型化领域应用前景广阔.  相似文献   

3.
五边形贴片天线具有较好的宽带特性和圆极化特性,但是设计过程复杂,本文通过研究五边形贴片单元的设计入手,给出单端侧馈五边形贴片天线的设计方法,并给出了5.6 GHz的五边形圆极化微带天线的HFSS仿真结果,以之为天线单元,构成4元天线阵列,给出馈电网络设计的合理方法,采用HFSS软件进行优化设计,进行仿真,仿真结果证明,...  相似文献   

4.
高隔离度的双极化口径耦合微带单元与阵列天线   总被引:3,自引:0,他引:3  
提出一种新型的双极化微带贴片单元与其阵列设计,该单元采用一对相互垂直的“H”形缝隙作口径耦合馈电,获得了良好的端口隔离度(在工作频带8.8~9.8 GHz内实测值大于42 dB).该结构用于SAR系统天线的子阵设计时,其网络布置较为简单.基于此设计,研制了八单元直线阵列天线,理论仿真和实验相当吻合,不但测得高的端口隔离度(>30dB),而且实测的交叉极化特性很好(<-32.5 dB).  相似文献   

5.
设计实现了一种工作在C波段的2×2的宽带小型化双圆极化微带阵列天线.通过多层结构和支节匹配技术,拓展带宽;T型功分器顺序相差馈电形成馈电网络且左右旋馈电网络分层排布,实现小型化.实物测试结果表明,该天线VSWR2的阻抗带宽达39.5%,左旋和右旋3 dB轴比带宽均达到28.6%以上,在工作频带3.4~4.2 GHz内,左旋和右旋增益均在10 dB以上,天线阵列尺寸仅为1.27λ_0×1.27λ_0×0.1λ_0.实物测试结果与仿真结果吻合良好.  相似文献   

6.
介绍一种新的共用口径双波段双极化(DBDP)微带天线阵的设计.天线工作于S波段和X波段,采用双线性极化,适用于机载或舰载的合成孔径雷达(SAR).为了满足高低波段的带宽要求,天线采用双层贴片形式,解决以往DBDP天线在低波段难以满足带宽要求的问题.在低波段采用微带振子天线,放置在高波段矩形微带天线的阵列间隙处,使低波段天线对高波段天线的影响降至最小,并由于利用了垂直放置的双极化微带振子作为低波段辐射单元,可以使双波段阵列适用于更广泛的双频比.在馈电方式上,采用外置功分器的形式,低波段采用邻 近耦合馈电,高波段采用同轴探针馈电.对天线进行了仿真、加工和测试,实验结果验证了 本设计的有效性.  相似文献   

7.
文章提出了一种适用于无线通讯系统的新型多频段共形微带天线。该天线由2个对称的双T槽型微带贴片组成,并以圆柱为载体形成共形。该天线由同轴线馈电,采用HFSS软件仿真,通过调节天线尺寸的大小,改变天线谐振点的大小,从而控制在指定频率范围内谐振点的个数;当天线尺寸一定时,可通过改变馈电点的位置对不同频率模式进行激励或者抑制。仿真结果显示,在3~7GHz频段内,该天线可以使得4个频段同时工作,其中心频点分别为4.10、5.86、6.44、6.92GHz。该微带天线具有共形、四频段同时通信、易于小型化等特性,可以应用于不同通信系统中。  相似文献   

8.
本文基于微波网络理论,分别设计了4单元和16单元的两款L波段阵列天线,应用于气象探空仪的接收部分,使接收部分的天线平面化及小型化。应用微波网络散射矩阵理论将天线单元之间的耦合效应、每个天线单元的幅度和相位等因素进行综合考虑,得到高增益阵列天线馈电网络。所设计的阵列天线的仿真、测试特性一致,而且在1.68 GHz处,4单元和16单元阵列天线最大实测增益分别为10.4 dBi、15.6 dBi。这两款阵列天线性能达到设计要求,可应用于气象探测领域。  相似文献   

9.
为了提高汽车雷达天线阵列的增益,使形成窄波束辐射,设计了一款工作在24.000 GHz的阶梯阻抗谐振器(stepped impedance resonator,SIR)微带阵列天线。天线阵列采用两级低损耗T型结功率分配器和四分之一波长微带阻抗变换器馈电,将四个SIR线阵单元组成天线阵列。通过增加SIR微带贴片的数目来提高阵列天线的增益,调整SIR的尺寸以控制工作频带,利用功率分配器进行阻抗变换和波束宽度控制。天线阵列的峰值增益可达到21.67 dBi。在中心频率24.125 GHz上,XOZ面的主瓣宽度为10°,YOZ面的主瓣宽度为17°,旁瓣抑制度为11 dB。该阵列天线面积小、增益高、波束窄、旁瓣电平低、后向辐射小,适用于汽车雷达系统。  相似文献   

10.
设计了一种工作在C波段的5×5小型化低剖面双圆极化微带阵列天线.与传统的阵列相比,通过相邻2×2子阵列的贴片交错,可以缩小单元间距,实现小型化;采用两个T型功分器馈电网络,同层分布,可以拓展带宽.测试结果表明,左右旋圆极化的阻抗带宽(VSWR<2)和轴比带宽(AR<3dB)分别达到20%和16%,在频段5.3-6.36 GHz内,左右旋增益最大值为15.2dBi.天线阵列尺寸为3.05λ0×2.74λ0×0.037λ0.  相似文献   

11.
提出了利用有源电路和介质加载微带线调相技术提高毫米波微带阵列天线增益的方法,设计并实现了一个具有高增益的有源毫米波微带天线阵列.该阵列天线由4个子阵组成,每个子阵有64个微带贴片单元,分别由紧凑的混合毫米波功率放大器馈电.通道间的相位在补偿后的不一致性小于10°时,所实现的毫米波微带阵列天线的增益达30 dB,从而验证了该方法的有效性.  相似文献   

12.
采用单层方环和圆贴片的复合结构作为微带平面反射阵列天线的单元,利用Ansfot HFSS仿真软件分析了单元的相移特性,并以此为阵元设计仿真了一个X波段49单元微带反射阵列天线。仿真结果显示,在中心频率10 GHz处,阵列天线的增益达到19.5 dB。在(8.5—11.5)GHz的频带上增益跌落小于3 dB,半功率波瓣宽度为13°,实现了高增益和宽频带性能。  相似文献   

13.
提出了一种新型共面波导(CPW)馈电的1×2圆极化阵列天线及改进后的2×2阵列天线.为了改善阵列天线的圆极化轴比带宽,将顺序旋转馈电技术与共面波导-槽线馈电网络相结合,设计了用于微带贴片天线的新型馈电网络.仿真与实测结果证明,该类型的馈电网络可以同时改善阵列天线的阻抗带宽与轴比带宽.实测结果表明,1×2线阵的阻抗带宽与轴比带宽分别为3.79%和16.41%.2×2面阵的阻抗带宽与轴比带宽分别为3.61%和10.83%.  相似文献   

14.
针对卫星地面通信系统采用的抛物面天线体积大、和机动灵活性差的缺点,以及微带阵列天线增益小、损耗大的缺点,提出了一种新型波导喇叭天线,辐射层为中心开八边形孔的理想导体,馈电层采用双层正交微带馈电来实现双极化,单元天线尺寸仅有21 mm×21 mm×2.2 mm,设计了一分四的等分馈电网络,并组成2×2的波导喇叭天线阵列。利用HFSS仿真软件得到2×2阵列增益达到15 dB,利用矢量网络分析仪测得阵列天线增益为14.5 dB。该天线结构简单,体积较小,增益高,组成大型阵列之后能够代替传统的抛物面天线,作为卫星地面通信系统天线。  相似文献   

15.
针对卫星地面通信系统采用的抛物面天线体积大,机动灵活性差的缺点,以及微带阵列天线增益小,损耗大的缺点,提出了一种新型波导喇叭天线,辐射层为中心开八边形孔的理想导体,馈电层采用双层正交微带馈电来实现双极化,单元天线尺寸仅有21mm*21mm*2.2mm,设计了一分四的等分馈电网络,并组成2*2的波导喇叭天线阵列。利用HFSS仿真软件得到2*2阵列增益达到15dB,利用矢量网络分析仪测得阵列天线增益为14.5dB。该天线结构简单,体积较小,增益高,组成大型阵列之后能够代替传统的抛物面天线,作为卫星地面通信系统天线。  相似文献   

16.
设计了一款应用于可穿戴设备和柔性电子设备中的双频柔性天线.该天线采用了PDMS(Polydimethylsiloxane,聚二甲硅氧烷)柔性材料作为介质基板,具备可弯曲特性.引入H形辐射贴片,使天线具备双频特性.贴片底部的梯形结构设计,拓宽了工作带宽并降低了带宽内回波损耗.天线以铜作为辐射贴片和接地板材料,天线的整体尺寸为24 mm×38 mm×2 mm.利用仿真软件HFSS(High Frequency Structure Simulator,高频结构仿真)对天线进行仿真和参数优化,结果表明:天线在2.32-2.5 GHz和3.2-4.8 GHz两个频段具有低于-10 dB的回波损耗,覆盖了WLAN网路A波段(2.4-2.483 5 GHz)和卫星通信网络C波段(3.7-4.2 GHz);在一定弯曲范围内,天线可保持正常工作特性.  相似文献   

17.
为减小无源相控阵列天线的尺寸,提高阵列天线的转向能力,对以铁电薄膜移相器为移相单元的相控阵列天线进行了研究,提出了一种工作于15 GHz与18 GHz的双频1×4扇形微带贴片天线阵模型.该天线阵由共面叉指电容波导型铁电薄膜移相器、扇形微带天线及天线阵列组成.利用全波电磁仿真软件HFSS,通过改变钛酸锶钡(BST)铁电薄膜的介电常数,模拟加载不同偏置电压情况下BST薄膜移相器的相移特性,调试天线阵辐射转向角,实现了天线阵±22°转向,有效提高了天线阵列的转向能力.通过使用钛酸锶钡薄膜新型铁电材料,实现了天线阵列尺寸的缩小.  相似文献   

18.
微带阵列天线的馈电方式有微带线馈电和同轴馈电两种方式,本文利用HFSS软件对微带阵列天线进行了研究,分析了两种馈电方式的传输损耗及其对天线方向图的影响,利用模块化的设计方法实现了一种基于同轴线馈电结构的多元矩形微带阵列天线。在HFSS仿真设计环境里对天线进行了物理建模,该微带阵列天线的方向图特性良好,工程上实现比较方便。  相似文献   

19.
提出了一种新型的适合在ISM 2.45 GHz频段的无线通信和RFID等领域应用的N形微带贴片天线,该N形微带天线采用共面波导馈电,具有小型化、宽频带的特点。为了进行比较,建立了采用同轴馈电的N形微带天线以及采用共面波导馈电的E形微带天线,借助电磁场仿真软件Ansoft HFSS 10.0进行仿真。文中给出了天线反射损耗及辐射方向图的仿真结果,通过比较可以看出,在中心工作频率2.45 GHz处,相对带宽达到了20%,尺寸减小了25%。该设计具有一定的参考价值。  相似文献   

20.
结合经验公式和仿真软件,设计了一种双层贴片,两层介质的微带贴片天线单元.该单元天线采用单馈点正方形切角的方式实现圆极化,在频率为1520~1680 MHz、驻波比<1.5时,相对阻抗带宽达到10%,满足了第四代海事卫星通信中BGAN业务的需要.此外,该天线单元舍弃了传统的探针耦合馈电方式,采用特性阻抗为100Ω的微带线馈电,便于实现天线阵微带馈电网路的设计,从而达到改善其方向性及轴比带宽的目的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号