首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) has an important function in cell regulation both as a precursor of second messenger molecules and by means of its direct interactions with cytosolic and membrane proteins. Biochemical studies have suggested a role for PtdIns(4,5)P2 in clathrin coat dynamics, and defects in its dephosphorylation at the synapse produce an accumulation of coated endocytic intermediates. However, the involvement of PtdIns(4,5)P2 in synaptic vesicle exocytosis remains unclear. Here, we show that decreased levels of PtdIns(4,5)P2 in the brain and an impairment of its depolarization-dependent synthesis in nerve terminals lead to early postnatal lethality and synaptic defects in mice. These include decreased frequency of miniature currents, enhanced synaptic depression, a smaller readily releasable pool of vesicles, delayed endocytosis and slower recycling kinetics. Our results demonstrate a critical role for PtdIns(4,5)P2 synthesis in the regulation of multiple steps of the synaptic vesicle cycle.  相似文献   

2.
Sun JY  Wu XS  Wu LG 《Nature》2002,417(6888):555-559
During synaptic transmission, neurotransmitter-laden vesicles fuse with the presynaptic membrane and discharge their contents into the synaptic cleft. After fusion, the vesicular membrane is retrieved by endocytosis for reuse. This recycling mechanism ensures a constant supply of releasable vesicles at the nerve terminal. The kinetics of endocytosis have been measured mostly after intense or non-physiological stimulation. Here we use capacitance measurements to resolve the fusion and retrieval of single and multiple vesicles following mild physiological stimulation at a mammalian central synapse. The time constant of endocytosis after single vesicle fusion was 56 ms; after a single action potential or trains at < or = 2 Hz it was about 115 ms, but increased gradually to tens of seconds as the frequency and the number of action potentials increased. These results indicate that an increase in the rate of exocytosis at the active zone induces a decrease in the rate of endocytosis. Existing models, including inhibition of endocytosis by Ca(2+), could not account for these results our results suggest that an accumulation of unretrieved vesicles at the plasma membrane slows endocytosis. These findings may resolve the debate about the dependence of endocytosis kinetics on the stimulation frequency, and suggest a potential role of regulation of endocytosis in short-term synaptic depression.  相似文献   

3.
Willig KI  Rizzoli SO  Westphal V  Jahn R  Hell SW 《Nature》2006,440(7086):935-939
Synaptic transmission is mediated by neurotransmitters that are stored in synaptic vesicles and released by exocytosis upon activation. The vesicle membrane is then retrieved by endocytosis, and synaptic vesicles are regenerated and re-filled with neurotransmitter. Although many aspects of vesicle recycling are understood, the fate of the vesicles after fusion is still unclear. Do their components diffuse on the plasma membrane, or do they remain together? This question has been difficult to answer because synaptic vesicles are too small (approximately 40 nm in diameter) and too densely packed to be resolved by available fluorescence microscopes. Here we use stimulated emission depletion (STED) to reduce the focal spot area by about an order of magnitude below the diffraction limit, thereby resolving individual vesicles in the synapse. We show that synaptotagmin I, a protein resident in the vesicle membrane, remains clustered in isolated patches on the presynaptic membrane regardless of whether the nerve terminals are mildly active or intensely stimulated. This suggests that at least some vesicle constituents remain together during recycling. Our study also demonstrates that questions involving cellular structures with dimensions of a few tens of nanometres can be resolved with conventional far-field optics and visible light.  相似文献   

4.
Griesinger CB  Richards CD  Ashmore JF 《Nature》2005,435(7039):212-215
Ribbon-type synapses in inner hair cells of the mammalian cochlea encode the complexity of auditory signals by fast and tonic release through fusion of neurotransmitter-containing vesicles. At any instant, only about 100 vesicles are tethered to the synaptic ribbon, and about 14 of these are docked to the plasma membrane, constituting the readily releasable pool. Although this pool contains about the same number of vesicles as that of conventional synapses, ribbon release sites operate at rates of about two orders of magnitude higher and with submillisecond precision. How these sites replenish their vesicles so efficiently remains unclear. We show here, using two-photon imaging of single release sites in the intact cochlea, that preformed vesicles derived from cytoplasmic vesicle-generating compartments participate in fast release and replenishment. Vesicles were released at a maximal initial rate of 3 per millisecond during a depolarizing pulse, and were replenished at a rate of 1.9 per millisecond. We propose that such rapid resupply of vesicles enables temporally precise and sustained release rates. This may explain how the first auditory synapse can encode with indefatigable precision without having to rely on the slow, local endocytic vesicle cycle.  相似文献   

5.
M Zhen  Y Jin 《Nature》1999,401(6751):371-375
At synaptic junctions, specialized subcellular structures occur in both pre- and postsynaptic cells. Most presynaptic termini contain electron-dense membrane structures, often referred to as active zones, which function in vesicle docking and release. The components of those active zones and how they are formed are largely unknown. We report here that a mutation in the Caenorhabditis elegans syd-2 (for synapse-defective) gene causes a diffused localization of several presynaptic proteins and of a synaptic-vesicle membrane associated green fluorescent protein (GFP) marker. Ultrastructural analysis revealed that the active zones of syd-2 mutants were significantly lengthened, whereas the total number of vesicles per synapse and the number of vesicles at the prominent active zones were comparable to those in wild-type animals. Synaptic transmission is partially impaired in syd-2 mutants. syd-2 encodes a member of the liprin (for LAR-interacting protein) family of proteins which interact with LAR-type (for leukocyte common antigen related) receptor proteins with tyrosine phosphatase activity (RPTPs). SYD-2 protein is localized at presynaptic termini independently of the presence of vesicles, and functions cell autonomously. We propose that SYD-2 regulates the differentiation of presynaptic termini in particular the formation of the active zone, by acting as an intracellular anchor for RPTP signalling at synaptic junctions.  相似文献   

6.
A vertebrate neurotoxin, alpha-latrotoxin, from black widow spider venom causes synaptic vesicle exocytosis and neurotransmitter release from presynaptic nerve terminals. Although the mechanism of action of alpha-latrotoxin is not known, it does require binding of alpha-latrotoxin to a high-affinity receptor on the presynaptic plasma membrane. The alpha-latrotoxin receptor seems to be exclusively at the presynaptic plasmamembrane. Here we report that the alpha-latrotoxin receptor specifically binds to a synaptic vesicle protein, synaptotagmin, and modulates its phosphorylation. Synaptotagmin is a synaptic vesicle-specific membrane protein that binds negatively charged phospholipids and contains two copies of a putative Ca(2+)-binding domain from protein kinase C (the C2-domain), suggesting a regulatory role in synaptic vesicle fusion. Our findings suggest that a physiological role of the alpha-latrotoxin receptor may be the docking of synaptic vesicles at the active zone. The direct interaction of the alpha-latrotoxin receptor with a synaptic vesicle protein also suggests a mechanism of action for this toxin in causing neurotransmitter release.  相似文献   

7.
Poskanzer KE  Marek KW  Sweeney ST  Davis GW 《Nature》2003,426(6966):559-563
Neurotransmission requires a balance of synaptic vesicle exocytosis and endocytosis. Synaptotagmin I (Syt I) is widely regarded as the primary calcium sensor for synaptic vesicle exocytosis. Previous biochemical data suggest that Syt I may also function during synaptic vesicle endocytosis; however, ultrastructural analyses at synapses with impaired Syt I function have provided an indirect and conflicting view of the role of Syt I during synaptic vesicle endocytosis. Until now it has not been possible experimentally to separate the exocytic and endocytic functions of Syt I in vivo. Here, we test directly the role of Syt I during endocytosis in vivo. We use quantitative live imaging of a pH-sensitive green fluorescent protein fused to a synaptic vesicle protein (synapto-pHluorin) to measure the kinetics of endocytosis in sytI-null Drosophila. We then combine live imaging of the synapto-pHluorins with photoinactivation of Syt I, through fluorescein-assisted light inactivation, after normal Syt I-mediated vesicle exocytosis. By inactivating Syt I only during endocytosis, we demonstrate that Syt I is necessary for the endocytosis of synaptic vesicles that have undergone exocytosis using a functional Syt I protein.  相似文献   

8.
Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis   总被引:1,自引:0,他引:1  
Synapses are specialized intercellular junctions in which cell adhesion molecules connect the presynaptic machinery for neurotransmitter release to the postsynaptic machinery for receptor signalling. Neurotransmitter release requires the presynaptic co-assembly of Ca2+ channels with the secretory apparatus, but little is known about how synaptic components are organized. Alpha-neurexins, a family of >1,000 presynaptic cell-surface proteins encoded by three genes, link the pre- and postsynaptic compartments of synapses by binding extracellularly to postsynaptic cell adhesion molecules and intracellularly to presynaptic PDZ domain proteins. Using triple-knockout mice, we show that alpha-neurexins are not required for synapse formation, but are essential for Ca2+-triggered neurotransmitter release. Neurotransmitter release is impaired because synaptic Ca2+ channel function is markedly reduced, although the number of cell-surface Ca2+ channels appears normal. These data suggest that alpha-neurexins organize presynaptic terminals by functionally coupling Ca2+ channels to the presynaptic machinery.  相似文献   

9.
Mosca TJ  Hong W  Dani VS  Favaloro V  Luo L 《Nature》2012,484(7393):237-241
Synapse assembly requires trans-synaptic signals between the pre- and postsynapse, but our understanding of the essential organizational molecules involved in this process remains incomplete. Teneurin proteins are conserved, epidermal growth factor (EGF)-repeat-containing transmembrane proteins with large extracellular domains. Here we show that two Drosophila Teneurins, Ten-m and Ten-a, are required for neuromuscular synapse organization and target selection. Ten-a is presynaptic whereas Ten-m is mostly postsynaptic; neuronal Ten-a and muscle Ten-m form a complex in vivo. Pre- or postsynaptic Teneurin perturbations cause severe synapse loss and impair many facets of organization trans-synaptically and cell autonomously. These include defects in active zone apposition, release sites, membrane and vesicle organization, and synaptic transmission. Moreover, the presynaptic microtubule and postsynaptic spectrin cytoskeletons are severely disrupted, suggesting a mechanism whereby Teneurins organize the cytoskeleton, which in turn affects other aspects of synapse development. Supporting this, Ten-m physically interacts with α-Spectrin. Genetic analyses of teneurin and neuroligin reveal that they have differential roles that synergize to promote synapse assembly. Finally, at elevated endogenous levels, Ten-m regulates target selection between specific motor neurons and muscles. Our study identifies the Teneurins as a key bi-directional trans-synaptic signal involved in general synapse organization, and demonstrates that proteins such as these can also regulate target selection.  相似文献   

10.
The architecture of active zone material at the frog's neuromuscular junction   总被引:11,自引:0,他引:11  
Harlow ML  Ress D  Stoschek A  Marshall RM  McMahan UJ 《Nature》2001,409(6819):479-484
Active zone material at the nervous system's synapses is situated next to synaptic vesicles that are docked at the presynaptic plasma membrane, and calcium channels that are anchored in the membrane. Here we use electron microscope tomography to show the arrangement and associations of structural components of this compact organelle at a model synapse, the frog's neuromuscular junction. Our findings indicate that the active zone material helps to dock the vesicles and anchor the channels, and that its architecture provides both a particular spatial relationship and a structural linkage between them. The structural linkage may include proteins that mediate the calcium-triggered exocytosis of neurotransmitter by the synaptic vesicles during synaptic transmission.  相似文献   

11.
Synaptic terminals and neuroendocrine cells are packed with secretory vesicles, only a few of which are docked at the plasma membrane and readily releasable. The remainder are thought to constitute a large cytoplasmic reserve pool awaiting recruitment into the readily releasable pool (RRP) for exocytosis. How vesicles are prioritized in recruitment is still unknown: the choice could be random, or else the oldest or the newest ones might be favoured. Here we show, using a fluorescent cargo protein that changes colour with time, that vesicles in bovine adrenal chromaffin cells segregate into distinct populations, based on age. Newly assembled vesicles are immobile (morphologically docked) at the plasma membrane shortly after biogenesis, whereas older vesicles are mobile and located deeper in the cell. Different secretagogues selectively release vesicles from the RRP or, surprisingly, selectively from the deeper cytoplasmic pool. Thus, far from being equal, vesicles are segregated functionally and spatially according to age.  相似文献   

12.
Neurotransmitters are released by synaptic vesicle fusion at the active zone. The active zone of a synapse mediates Ca2+-triggered neurotransmitter release, and integrates presynaptic signals in regulating this release. Much is known about the structure of active zones and synaptic vesicles, but the functional relation between their components is poorly understood. Here we show that RIM1alpha, an active zone protein that was identified as a putative effector for the synaptic vesicle protein Rab3A, interacts with several active zone molecules, including Munc13-1 (ref. 6) and alpha-liprins, to form a protein scaffold in the presynaptic nerve terminal. Abolishing the expression of RIM1alpha in mice shows that RIM1alpha is essential for maintaining normal probability of neurotransmitter release, and for regulating release during short-term synaptic plasticity. These data indicate that RIM1alpha has a central function in integrating active zone proteins and synaptic vesicles into a molecular scaffold that controls neurotransmitter release.  相似文献   

13.
I Augustin  C Rosenmund  T C Südhof  N Brose 《Nature》1999,400(6743):457-461
Neurotransmitter release at synapses between nerve cells is mediated by calcium-triggered exocytotic fusion of synaptic vesicles. Before fusion, vesicles dock at the presynaptic release site where they mature to a fusion-competent state. Here we identify Munc13-1, a brain-specific presynaptic phorbol ester receptor, as an essential protein for synaptic vesicle maturation. We show that glutamatergic hippocampal neurons from mice lacking Munc13-1 form ultrastructurally normal synapses whose synaptic-vesicle cycle is arrested at the maturation step. Transmitter release from mutant synapses cannot be triggered by action potentials, calcium-ionophores or hypertonic sucrose solution. In contrast, release evoked by alpha-latrotoxin is indistinguishable from wild-type controls, indicating that the toxin can bypass Munc13-1-mediated vesicle maturation. A small subpopulation of synapses of any given glutamatergic neuron as well as all synapses of GABA (gamma-aminobutyric acid)-containing neurons are unaffected by Munc13-1 loss, demonstrating the existence of multiple and transmitter-specific synaptic vesicle maturation processes in synapses.  相似文献   

14.
Aravanis AM  Pyle JL  Tsien RW 《Nature》2003,423(6940):643-647
Vesicle fusion and recycling are particularly critical for ongoing neurotransmitter release in the small nerve terminals of the brain, which typically contain about 30 functional vesicles. However, the modes of exocytosis and endocytosis that operate at synapses of the central nervous system are incompletely understood. Here we show real-time visualization of a single vesicle fusing at a small synapse of the central nervous system, made possible by highly intensified charge-coupled device imaging of hippocampal synaptic terminals, in which a single vesicle was labelled with the fluorescent membrane marker FM1-43 (ref. 6). In a small number of cases, full loss of fluorescent membrane dye was elicited by a single action potential, consistent with classical complete collapse. In most cases, however, action potentials triggered only partial loss of fluorescence, suggesting vesicular retention of membrane marker, consistent with 'kiss-and-run' vesicle cycling. An alternative hypothesis of independent fusion of partially stained vesicles arising from endosomal splitting could be excluded by observations on the size and timing of successive fusion events. Thus, our experimental evidence supports a predominance of kiss-and-run fusion events and rapid vesicular re-use.  相似文献   

15.
Neuroligins and neurexins link synaptic function to cognitive disease   总被引:1,自引:0,他引:1  
Südhof TC 《Nature》2008,455(7215):903-911
The brain processes information by transmitting signals at synapses, which connect neurons into vast networks of communicating cells. In these networks, synapses not only transmit signals but also transform and refine them. Neurexins and neuroligins are synaptic cell-adhesion molecules that connect presynaptic and postsynaptic neurons at synapses, mediate signalling across the synapse, and shape the properties of neural networks by specifying synaptic functions. In humans, alterations in genes encoding neurexins or neuroligins have recently been implicated in autism and other cognitive diseases, linking synaptic cell adhesion to cognition and its disorders.  相似文献   

16.
R S Zucker  P G Haydon 《Nature》1988,335(6188):360-362
Neurons communicate by secreting a transmitter that excites or inhibits other neurons at synapses. The role of presynaptic membrane potential in triggering transmitter release is still controversial. In one view, presynaptic action potentials trigger the release by the entry of calcium ions into presynaptic terminals through voltage-dependent calcium channels. Calcium acts at high local concentrations at release sites near channel mouths to cause neurosecretion. An opposing view is that, in addition to elevating presynaptic calcium, presynaptic potential stimulates transmitter release by a distinct direct action. The relative importance of depolarization and calcium entry in neurosecretion cannot be determined because the two events are tightly linked. To delineate the roles of presynaptic potential and calcium entry in transmitter release, we have used nitr-5, a photolabile calcium chelator, and a voltage-clamp technique to control intracellular calcium and membrane potential independently at a synapse formed between cell bodies of cultured neurons of the fresh water snail Helisoma trivolvis. We found transmitter release occurred when presynaptic calcium levels were elevated to concentrations of a few micromolar, and that presynaptic voltage had no direct effect on neurosecretion.  相似文献   

17.
J E Richmond  R M Weimer  E M Jorgensen 《Nature》2001,412(6844):338-341
The priming step of synaptic vesicle exocytosis is thought to require the formation of the SNARE complex, which comprises the proteins synaptobrevin, SNAP-25 and syntaxin. In solution syntaxin adopts a default, closed configuration that is incompatible with formation of the SNARE complex. Specifically, the amino terminus of syntaxin binds the SNARE motif and occludes interactions with the other SNARE proteins. The N terminus of syntaxin also binds the presynaptic protein UNC-13 (ref. 5). Studies in mouse, Drosophila and Caenorhabditis elegans suggest that UNC-13 functions at a post-docking step of exocytosis, most likely during synaptic vesicle priming. Therefore, UNC-13 binding to the N terminus of syntaxin may promote the open configuration of syntaxin. To test this model, we engineered mutations into C. elegans syntaxin that cause the protein to adopt the open configuration constitutively. Here we demonstrate that the open form of syntaxin can bypass the requirement for UNC-13 in synaptic vesicle priming. Thus, it is likely that UNC-13 primes synaptic vesicles for fusion by promoting the open configuration of syntaxin.  相似文献   

18.
Liao EH  Hung W  Abrams B  Zhen M 《Nature》2004,430(6997):345-350
During synapse formation, specialized subcellular structures develop at synaptic junctions in a tightly regulated fashion. Cross-signalling initiated by ephrins, Wnts and transforming growth factor-beta family members between presynaptic and postsynaptic termini are proposed to govern synapse formation. It is not well understood how multiple signals are integrated and regulated by developing synaptic termini to control synaptic differentiation. Here we report the identification of FSN-1, a novel F-box protein that is required in presynaptic neurons for the restriction and/or maturation of synapses in Caenorhabditis elegans. Many F-box proteins are target recognition subunits of SCF (Skp, Cullin, F-box) ubiquitin-ligase complexes. fsn-1 functions in the same pathway as rpm-1, a gene encoding a large protein with RING finger domains. FSN-1 physically associates with RPM-1 and the C. elegans homologues of SKP1 and Cullin to form a new type of SCF complex at presynaptic periactive zones. We provide evidence that T10H9.2, which encodes the C. elegans receptor tyrosine kinase ALK (anaplastic lymphoma kinase), may be a target or a downstream effector through which FSN-1 stabilizes synapse formation. This neuron-specific, SCF-like complex therefore provides a localized signal to attenuate presynaptic differentiation.  相似文献   

19.
Transport, capture and exocytosis of single synaptic vesicles at active zones   总被引:22,自引:0,他引:22  
Zenisek D  Steyer JA  Almers W 《Nature》2000,406(6798):849-854
To sustain high rates of transmitter release, synaptic terminals must rapidly re-supply vesicles to release sites and prime them for exocytosis. Here we describe imaging of single synaptic vesicles near the plasma membrane of live ribbon synaptic terminals. Vesicles were captured at small, discrete active zones near the terminal surface. An electric stimulus caused them to undergo rapid exocytosis, seen as the release of a fluorescent lipid from the vesicles into the plasma membrane. Next, vesicles held in reserve about 20 nm from the plasma membrane advanced to exocytic sites, and became release-ready 250 ms later. Apparently a specific structure holds vesicles at an active zone to bring v-SNAREs and t-SNAREs, the proteins that mediate vesicle fusion, within striking distance of each other, and then allows the triggered movement of such vesicles to the plasma membrane.  相似文献   

20.
Low-molecular-weight GTP-binding proteins are strong candidates for regulators of membrane traffic. In yeast, mutations in the sec4 or ypt1 genes encoding small GTP-binding proteins inhibit constitutive membrane flow at the plasma membrane or Golgi complex, respectively. It has been suggested that membrane fusion-fission events are regulated by cycling of small GTP-binding proteins between a membrane-bound and free state, but although most of these small proteins are found in both soluble and tightly membrane-bound forms, there is no direct evidence to support such cycling. In rat brain a small GTP-binding protein, rab3A, is exclusively associated with synaptic vesicles, the secretory organelles of nerve terminals. Here we use isolated nerve terminals to study the fate of rab3A during synaptic vesicle exocytosis. We find that rab3A dissociates quantitatively from the vesicle membrane after Ca2(+)-dependent exocytosis and that this dissociation is partially reversible during recovery after stimulation. These results are direct evidence for an association-dissociation cycle of a small GTP-binding protein during traffic of its host membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号