共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
关于内—幂零群和Schmidt定理 总被引:1,自引:0,他引:1
游泰杰 《贵州师范大学学报(自然科学版)》1993,11(4):32-36
关于内—怕—外—∑群的研究,是近年来相当活跃的群论课题之一,其中,Schmidt群(即内—幂零群)的性质和结构有着较为普遍的意义。本文首先给出几个判别内—幂零群的条件,然后给出Schmidt—Iwasawa定理的一个推广。 相似文献
3.
唐锋 《苏州科技学院学报(自然科学版)》2010,27(2):1-3
根据It(o)和Bumside两个关于群的p-幂零性定理,探讨群的幂零剩余对p-幂零性的影响,获得了有限群p-幂零的几个充分必要条件,同时给出了有限群p-幂零的一个充分条件. 相似文献
4.
π-幂零群 总被引:2,自引:0,他引:2
王坤仁 《四川师范大学学报(自然科学版)》1993,(4)
本文给出了π-幂零群的若干刻划;引进了相关的特征子群π-超中心和π-幂零剩余,得到了π-幂零相应的特征性质;特别讨论了内、外π-幂零群的结构,获得了有意义的结果,最后讨论了π-Abel群. 相似文献
5.
设G是有限群N通过有限群H的半直积。 证明了某些条件下G的每个Coleman自同构均为内自同构。 相似文献
6.
极小子群与幂零性 总被引:3,自引:11,他引:3
王坤仁 《四川师范大学学报(自然科学版)》1995,18(2):16-20
本文通过精细分析内幂零群的结构,利用极小子群具有某些特殊性质的条件,给出了幂零群的若干充分条件,其中许多结论推广或深化了现有的结果。 相似文献
7.
在文献[1]的基础上,改变-些条件得出G为幂零群的若干充分条件。利用弱C-正规,s-正规与弱左Engle元之间的关系获得了下面几个定理:①G的每个素数阶元均为G的弱左Engle元;如果2∈φ(G),G的每个4阶循环子群均在G中弱C-正规,则G是幂零群。②设N〈3G,G/N幂零,2∈π(G),若N的素数阶元均为G的弱左Engle元,且N的每个4阶循环子群也在G中弱C-正规,则G幂零。③如果G的每个素数阶元x为NG((x))的弱左Engle元,并且〈x〉和G的每个4阶循环子群均在G中弱C-正规,则G是幂零群。④G的每个素数阶元均为G的弱左Engle元;如果2∈π(G),G的每个4阶循环子群均在G中S-正规,则G是幂零群。⑤如果G的每个素数阶元x为NG((x))的弱左Engle元,并且(x)和G的每个4阶循环子群均在G中弱S-正规,则G是幂零群。 相似文献
8.
幂零群的若干充分条件 总被引:1,自引:0,他引:1
在文献[1]的基础上,改变一些条件得出G为幂零群的若干充分条件.利用弱C-正规,S-正规与弱左Engle元之间的关系获得了下面几个定理:①G的每个素数阶元均为G的弱左Engle元;如果2∈Φ(G),G的每个4阶循环子群均在G中弱C-正规,则G是幂零群.②设NG,G/N幂零,2∈π(G),若N的素数阶元均为G的弱左Engle元,且N的每个4阶循环子群也在G中弱C-正规,则G幂零.③如果G的每个素数阶元x为NG(〈x〉)的弱左Engle元,并且〈x〉和G的每个4阶循环子群均在G中弱C-正规,则G是幂零群.④G的每个素数阶元均为G的弱左Engle元;如果2∈π(G),G的每个4阶循环子群均在G中S-正规,则G是幂零群.⑤如果G的每个素数阶元x为NG(〈x〉)的弱左Engle元,并且〈x〉和G的每个4阶循环子群均在G中弱S-正规,则G是幂零群. 相似文献
9.
利用完全条件置换子群的基本性质得到了:①如果G的每个素数阶元都是G的弱左Engle元,2∈π(G),G的每个4阶循环子群是G的完全条件置换子群,那么G幂零.②设N(△)G,G/N幂零,2∈π(G),若N的素数阶元均为G的弱左Engle元,N的每个4阶循环子群是G的完全条件置换子群,那么G幂零.③如果G的每个素数阶元x为NG(〈x〉)的弱左Engle元,〈x〉的每个4阶循环子群是G的完全条件置换子群,那么G幂零. 相似文献
10.
通过对内幂零群结构的分析,利用极小子群具有的某些特殊性质给出了幂零群的若干充分条件,并深化了部分现有的结果. 相似文献
11.
李千路 《山西大同大学学报(自然科学版)》2007,23(3)
关于群的幂零性,P.Hall有下述著名结果:若群G有一个正规幂零子群N使得G/N'幂零,则G也幂零.我们证得:若用几乎幂零代替P.Hall结果中的幂零,其结论仍然成立. 相似文献
12.
左可正 《湖北师范学院学报(自然科学版)》1990,(2)
有限幂零群的特征性质在[1]、[2]中已给出了许多,本文通过次中心给出了幂零群的两个充要条件。其一,G=SZ(G),SZ(G)是G的超次中心;其二,G幂零的充要条件是G/SZ(G)是幂零的。本文限定都是有限群。 相似文献
13.
悉知在群论的研究中,许多子群在确定群的特性起着主要的作用,讨论了幂零群的极大子群及其Fratini子群。 相似文献
14.
王坤仁 《四川师范大学学报(自然科学版)》2006,29(5):505-508
主要证明了如下两个定理:(1)假设Ⅳ是有限群G的一个正规子群使得G/Np-幂零群.如果N的Sylow P-子群P与G的p-幂零剩余G^p-N 之交P∩中每个p阶或4阶(当P=2的时候)元素均含于Z(NG(P))中,则G是p-幂零群.
(2)假设H是有限群G的一个正规子群使得G/H是幂零群.如果对于|H|的每个素因数P和H的Sylow P-子群P,P与G的p-幂零剩余G^p-N 之交G^p-N 中每个P阶或4阶元素x都是NG(P) 的一个弱左Engle元素,则G是幂零群. 相似文献
15.
16.
李千路 《山西大同大学学报(自然科学版)》2010,26(4):1-2
若有限群非幂零但其所有真子群均幂零,则称其为一个极小非幂零群.一类群称为广义极小非幂零群,如果它有一个非幂零真子群使得其它不包含在这个子群中的所有真子群均为幂零的.证得这类群可解,并讨论了该类群的子群的性质. 相似文献
17.
为研究有限幂零群G忠实作用在一个可解群H上的轨道长度,假设有限幂零群G忠实不可约作用在一个初等交换q-群V上,则可得Z(G)是循环群,且对任意V中元v,中心化子CG(v)与Z(G)交一定等于1,考虑中心化子阶的情况。假设G是幂零类为2的有限群且Z(G)是循环群,若子群S 满足|S| 2>|G|,则S与中心Z(G)交不等于1。若G忠实不可约作用在初等交换q-群V上,证明了所有的最小轨道长度的平方大于等于群G的阶。 相似文献
19.
吕克伟 《山西大学学报(自然科学版)》1997,20(2):160-162
文章在陈重穆专著的基础上对πσ—幂零群进行研究,得到了Frobeniusp-幂零准则的推广:设G为有限群,则以下三条等价:1)G为πσ—幂零群;2)对任意π—子群B:1<B<G,有NG(B)为πσ—幂零群;3)任意π—子群B,有NG(B)/CG(B)为π—σ—Sylow塔群。显然,以上结果是对p—幂零,σ—Sylow塔及π—幂零的统一推广 相似文献
20.