首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of the solar wind with Earth's magnetosphere gives rise to the bright polar aurorae and to geomagnetic storms, but the relation between the solar wind and the dynamics of the outer planets' magnetospheres is poorly understood. Jupiter's magnetospheric dynamics and aurorae are dominated by processes internal to the jovian system, whereas Saturn's magnetosphere has generally been considered to have both internal and solar-wind-driven processes. This hypothesis, however, is tentative because of limited simultaneous solar wind and magnetospheric measurements. Here we report solar wind measurements, immediately upstream of Saturn, over a one-month period. When combined with simultaneous ultraviolet imaging we find that, unlike Jupiter, Saturn's aurorae respond strongly to solar wind conditions. But in contrast to Earth, the main controlling factor appears to be solar wind dynamic pressure and electric field, with the orientation of the interplanetary magnetic field playing a much more limited role. Saturn's magnetosphere is, therefore, strongly driven by the solar wind, but the solar wind conditions that drive it differ from those that drive the Earth's magnetosphere.  相似文献   

2.
Storm-time changes of main plasma parameters in the auroral ionosphere are analyzed for two intense storms occurring on May 15, 1997 and Sept. 25, 1998, with emphasis on their relationship to the solar wind dynamic pressure and the IMF Bz component. Strong hard particle precipitation occurred in the initial phase for both storma,associated with high solar wind dynamical pressure. During the recovery phase of the storms, some strong particle precipitation was neither concerned with high solar wind pressure nor southward IMF Bz. Severe negative storm effects depicted by electron density depletion appeared in theF-region during the main and recovery phase of both storms, caused by intensive electric field-related strong Joule/frictional heating when IMF was largely southward. The ion temperature behaved similarly in E- and F-region, but the electron temperature did quite different, with a strong increase in the lower E-region relating to plasma instability excited by strong electric field and a slight decrease in the F-region probably concerning with a cooling process. The field-aligned ion velocity was high and apparently anticorrelated with the northward component of the ion convection velocity.  相似文献   

3.
2010年,作者在地球外太空发现一个以磁口(cusp)为中心的巨大的动力辐射区域.这个新辐射区域纵深可达10.5Re;在7-8Re高度上,其尺度在纬线和经线方向上可分别达到6Re和>10Re;当人造卫星穿越该区域时,测得的电磁涨落强度与高能带电粒子强度都有数量级的增加.本文对此进行了综述分析,认为这是太空时代最关键和最...  相似文献   

4.
Zarka P  Lamy L  Cecconi B  Prangé R  Rucker HO 《Nature》2007,450(7167):265-267
The internal rotation rates of the giant planets can be estimated by cloud motions, but such an approach is not very precise because absolute wind speeds are not known a priori and depend on latitude: periodicities in the radio emissions, thought to be tied to the internal planetary magnetic field, are used instead. Saturn, despite an apparently axisymmetric magnetic field, emits kilometre-wavelength (radio) photons from auroral sources. This emission is modulated at a period initially identified as 10 h 39 min 24 +/- 7 s, and this has been adopted as Saturn's rotation period. Subsequent observations, however, revealed that this period varies by +/-6 min on a timescale of several months to years. Here we report that the kilometric radiation period varies systematically by +/-1% with a characteristic timescale of 20-30 days. Here we show that these fluctuations are correlated with solar wind speed at Saturn, meaning that Saturn's radio clock is controlled, at least in part, by conditions external to the planet's magnetosphere. No correlation is found with the solar wind density, dynamic pressure or magnetic field; the solar wind speed therefore has a special function. We also show that the long-term fluctuations are simply an average of the short-term ones, and therefore the long-term variations are probably also driven by changes in the solar wind.  相似文献   

5.
The loss of ions from Venus through the plasma wake   总被引:1,自引:0,他引:1  
Venus, unlike Earth, is an extremely dry planet although both began with similar masses, distances from the Sun, and presumably water inventories. The high deuterium-to-hydrogen ratio in the venusian atmosphere relative to Earth's also indicates that the atmosphere has undergone significantly different evolution over the age of the Solar System. Present-day thermal escape is low for all atmospheric species. However, hydrogen can escape by means of collisions with hot atoms from ionospheric photochemistry, and although the bulk of O and O2 are gravitationally bound, heavy ions have been observed to escape through interaction with the solar wind. Nevertheless, their relative rates of escape, spatial distribution, and composition could not be determined from these previous measurements. Here we report Venus Express measurements showing that the dominant escaping ions are O+, He+ and H+. The escaping ions leave Venus through the plasma sheet (a central portion of the plasma wake) and in a boundary layer of the induced magnetosphere. The escape rate ratios are Q(H+)/Q(O+) = 1.9; Q(He+)/Q(O+) = 0.07. The first of these implies that the escape of H+ and O+, together with the estimated escape of neutral hydrogen and oxygen, currently takes place near the stoichometric ratio corresponding to water.  相似文献   

6.
根据1957—2012年的地磁指数Ap、Dst、AE和太阳活动参数(太阳黑子相对数R与太阳射电流量F10.7)数据,利用小波分析方法研究了地磁活动与太阳活动的关系.结果表明,Ap、Dst、AE指数和太阳活动参数均存在准11 a和准22 a的周期特征.Ap和AE峰值滞后于太阳参数峰值1~2 a;而Dst指数与太阳参数存在近似负相关的关系,但从第21太阳周起逐渐延迟于太阳参数,表明地磁活动受太阳活动影响的滞后性.此外,地磁指数峰值从第20太阳周开始有逐渐下降的趋势,反映了地磁活动对太阳活动的响应减弱.  相似文献   

7.
To interpret density holes in the solar wind,which are nonlinear structures observed by Cluster and Double Star,we propose an electrostatic ion fluid model.We derive the Sagdeev potential from the magnetohydrodynamic(MHD)equations and study the characteristics of nonlinear structures in our model.The results show that density depletions(or holes)can develop from linear ion acoustic waves or ion cyclotron waves in space plasmas when parameters such as Mach number,initial electric field and ratio of ion to electron temperature satisfy certain conditions.In our model,the relative density depletion(or density holes)is from 0 to 1, and the time duration of density holes is from 2 s to more than 98 s.These are in good agreement with the observations by Cluster and Double Star in the solar wind.Our model also shows that the density holes should be accompanied by bipolar electric field solitary structures,which have also been observed by Cluster in the solar wind.  相似文献   

8.
With geomagnetic measurements on board of CHAMP satellite, the characteristics of global large-scale field-aligned currents (FACs) in the topside ionosphere are investigated along with their responses to interplanetary conditions for the superstorm of November, 2003. It is found that (1) The storm-time FAC densities enhanced greatly in comparison with quiet period and the enhancements show hemispheric asymmetry of both summer-winter and sunlit-dark. (2) For the first time, it is revealed that the lati- tude-integrated FAC density is controlled mainly by solar wind dynamic pressure rather than iMF. (3) FACs expanded equatorward dramatically, with the lowest latitude being 45° MLat or more; on the dayside this expansion was controlled directly by IMF Bz, showing an interaction time scale of about 25 min in the solar wind-magnetosphere-ionosphere coupling system, and a nonlinear saturation of the equatorward expansion when IMF Bz 〈 -30 nT; while on the nightside, the expansion and recovery lagged about 3 h behind the IMF changes but nearly in phase with changes of SYM-H index. (4) During the storm main phase, the nightside FAC latitude coverage extended to 25° or wider, appearing multi-sheet current structure with more than 10 sheets.  相似文献   

9.
The plasma transport between the plasmasphere and the ionosphere in response to the interplanetary conditions is still not fully understood until now.Simultaneous observations of the plasmasphere and ionosphere from the newly developed Chinese Meridian Project provide a new opportunity for understanding the characteristic of the plasma transport and the coupling mechanism between these two regions.We investigate the response of the plasmasphere(L≈2)and ionosphere to the solar wind dynamic pressure pulse during geomagnetically quiet period of 21–27 March 2011.The response of the plasmasphere shows a significant depletion.The plasmaspheric density nearly decreases by half in response to the solar wind dynamic pressure pulse,and subsequently recovers to the original level in 1–2 d.Meanwhile,the maximum electron density of the ionospheric F2 layer(NmF2)and the total electron content(TEC)increase by 13%and 21%,respectively,and then gradually recover,which is opposite to the behavior during magnetic storms.Preliminary analysis shows that the plasmaspheric depletion may be mainly caused by the southward interplanetary magnetic field and changing dawn-dusk electric field.The plasmaspheric density variations seem to be controlled by both the IMF and ionospheric conditions.  相似文献   

10.
Storm-time changes of main plasma parameters in the auroral ionosphere are analyzed for two intense storms occurring on May 15, 1997 and Sept. 25, 1998, with emphasis on their relationship to the solar wind dynamic pressure and the IMFB z component. Strong hard particle precipitation occurred in the initial phase for both storms, associated with high solar wind dynamical pressure. During the recovery phase of the storms, some strong particle precipitation was neither concerned with high solar wind pressure nor southward IMFB z. Severe negative storm effects depicted by electron density depletion appeared in theF-region during the main and recovery phase of both storms, caused by intensive electric field-related strong Joule/frictional heating when IMF was largely southward. The ion temperature behaved similarly inE-andF-region, but the electron temperature did quite different, with a strong increase in the lowerE-region relating to plasma instability excited by strong electric field and a slight decrease in theF-region probably concerning with a cooling process. The field-aligned ion velocity was high and apparently anticorrelated with the northward component of the ion convection velocity. Foundation item: Supported by the National Natural Science Foundation of China (49674241) and the Research Fund for the Doctoral Program of Higher Education Biography: LIU Hui-xin (1974-), female, Ph.D. candidate. Research direction: polar ionospheric behaviors during magnetic storms.  相似文献   

11.
Strong disturbances associated with auroral substorms originate from the ionosphere–magnetosphere owing to the effects of the solar wind, and the wind field in the ionosphere is related to such substorm activity. Here, we describe the analysis of four auroral substorm events, for which we employed an all-sky Fabry–Perot interferometer to observe the two-dimensional horizontal wind field and combined the results with data from an all-sky charge-coupled device imager, a fluxgate magnetometer installed at Yellow River Station, and the Super Dual Auroral Radar Network. The results demonstrate that, during auroral substorms, the vector wind field is related closely to variations in the ion drift and geomagnetic field. Moreover, we observed a changing wind field of approximately 300 m/s in response to variations in the electric and magnetic fields (likely caused by ion drag) and a disturbance of about 200 m/s that we attribute to the interaction of Joule heating and ion drag.  相似文献   

12.
场向电流与地磁和亚暴活动的相关性   总被引:2,自引:0,他引:2  
检验了场向电流与地磁和亚暴活动的相关性。按极光电集流指数AL的大小,地磁活动被分为4个水平,即|AL|<=50,50<|AL|<=150,150<|AL|<=300和|AL|>300分别相应于非常平静、平静、扰动和强烈扰动。统计结果表明,场向电流的发生率、强度和密度都随地磁活动的增加而增大。在最低活动水平,发生率只有8.9%,而73.2%的事件发生在扰动水平以上。对于夜间的场向电流,65.5%的事件伴随着磁层亚暴。  相似文献   

13.
通过观察甚低频电磁波的相位变化,预测太阳耀斑的级别.当太阳耀斑爆发时,太阳表面首先会发出大量电磁辐射(主要是X射线),甚低频电磁波能很好地感应到此辐射;其次还喷射出大量带电低能粒子流,这会引起地磁暴,且通常在耀斑爆发1~2d之后到达地球.给出了一个预报地磁暴的实例.两事件的时间间隔约为28h,太阳风的速度约为1 484.1km/s.  相似文献   

14.
We analyzed the properties of the solar wind appeared during November 7–8, 1998. Results show that the spaceship ACE spotted a shock (hereinafter referred to as the first shock) at 07:33 UT, November 7. The sheath appeared from the first shock to 22:00 UT November 7. A magnetic cloud-like (MCL) was observed during the period from 22:00 UT November 7 to 11:50 UT, November 8. Another shock was observed at 04:19 UT, November 8 (the second shock). It is apparent that the second shock has entered the rear part of the MCL (MCL2), though the former part of the MCL (MCL1) was not affected by the second shock. The main phase of the geomagnetic storm is split into three steps for the convenience of SYM-H index analysis. Step 1 covers the period from the sudden storm commence (SSC) at 08:15 UT, November 7 to the moment of 22:44 UT, November 7. Step 2 starts from 22:44 UT, November 7 and ends at 04:51 UT, November 8. The last step runs from 04:51 UT, November 8 to 06:21 UT, November 8. Step 2 has played a key role in the main development phase of the geomagnetic storm. Analysis of the solar wind properties associated with the main phase shows that the three steps in the main phase have sheath, MCL1, and MCL2 as their respective interplanetary source. Specifically, the sheath is covered by the solar wind data from 07:33 UT to 22:00 UT, November 7, MCL1 by the solar wind data from 22:00 UT, November 7 to 04:19 UT November 8, and MCL2 by the solar wind data from 04:19 UT to 05:57 UT, November 8. MCL1 had a strong and long lasting so UTh directed magnetic field, allowing it to play a key role in the development of the main phase. MCL2 made a much smaller contribution to the main development phase, compared with MCL1.  相似文献   

15.
 用Winch提出的地磁太阴日变化分析方法确定佘山地磁台的地磁太阴日变化的O1分量L(O1).首先把佘山台 196 0~1988年D,H和Z各分量的时均值资料做为整体分析年平均变化,然后按季节和太阳活动性细分后进行计算分析.讨论了L(O1)的基本特征和季节变化、电离层和海洋发电机效应对L(O1)的影响以及太阳活动对L(O1)的贡献,并与国外一些地磁台的结果进行了对比分析.  相似文献   

16.
为了研究地震电离层效应,采用CODE提供的全球电离层地图(GIM)数据分析了2010年4月14日玉树7.1级地震.通过插值提取了震中区域震前的TEC时间序列,利用滑动四分位距法排除太阳(SSN、F10.7)和地磁活动(Dst、Kp)的干扰,发现电离层在震前26天和13天存在明显异常.全球电离层异常分布结果显示,震前26天的电离层异常幅度小于震前13天的异常幅度,这可能与临震时间有关.此外,两次异常的峰值点与震中区域并不严格对应,而是靠近震中偏向赤道的一侧,同时磁共轭区也有异常出现,但范围和幅度较小,这两次电离层异常有可能是地震前兆.  相似文献   

17.
本文从MHD方程组出发,推导了太阳风磁化等离子体中非线性静电离子声波孤立于传播的非线性控制方程,从而得到了扰动位势的解析解。讨论了各种等离子体参数情况下孤立于形成的条件。  相似文献   

18.
Ozima M  Seki K  Terada N  Miura YN  Podosek FA  Shinagawa H 《Nature》2005,436(7051):655-659
The nitrogen in lunar soils is correlated to the surface and therefore clearly implanted from outside. The straightforward interpretation is that the nitrogen is implanted by the solar wind, but this explanation has difficulties accounting for both the abundance of nitrogen and a variation of the order of 30 per cent in the 15N/14N ratio. Here we propose that most of the nitrogen and some of the other volatile elements in lunar soils may actually have come from the Earth's atmosphere rather than the solar wind. We infer that this hypothesis is quantitatively reasonable if the escape of atmospheric gases, and implantation into lunar soil grains, occurred at a time when the Earth had essentially no geomagnetic field. Thus, evidence preserved in lunar soils might be useful in constraining when the geomagnetic field first appeared. This hypothesis could be tested by examination of lunar farside soils, which should lack the terrestrial component.  相似文献   

19.
围绕以LiBr/H2O为工质对的单级太阳能吸收式制冷循环因对太阳能集热温度要求高而难以实现应用的问题,提出了CaCl2-LiBr(1.35:1)/H2O(CaCl2与LiBr的质量比为1.35:1)新型工质对,系统地测定了其结晶温度、饱和蒸气压、密度和黏度,并与LiBr/H2 O进行了比较.结果表明,采用CaCl2-LiBr(1.35:1)/H2 O作为太阳能单级吸收式制冷循环的工质对,在同一制冷工况条件下,其发生温度,即太阳能集热温度比采用LiBr/H2 O的情况低6.2℃.另外,采用浸泡法测试了碳钢、316L不锈钢和紫铜在CaCl2-LiBr(1.35:1)/H2 O中的腐蚀速率,结果表明316L不锈钢和紫铜的腐蚀性非常小,可满足实际工程应用的要求.  相似文献   

20.
This work detects multi-scale, from hour to seconds, pressure-balanced structures (PBSs) in the solar wind based on the anti- correlation between the plasma thermal pressure and the magnetic pressure measured by WIND at 1 AU on April 5th, 2001. In our former research based on Cluster measurements, we showed the anti-correlation between the electron density and the magnetic field strength in multi-scales, and we supposed these structures may be pressure-balanced structures. Thus, in this work we aim to prove our speculation by the direct evidence on pressure measurements. Different from our previous work, we apply the WIND measurements this time, for they have both the magnetic pressure and the plasma pressure which Cluster could not offer. We use the wavelet cross-coherence method to analyze the correlation between the plasma pressure (P th ) and the magnetic pressure (P B ), and also the electron density (N e ) and the magnetic field strength (B) on various scales. We observe the anti-correlation between P th and P B distributed at different temporal scales ranging from 1000 s down to 10 s. This result directly indicates the existence of pressure- balanced structures (PBSs) with different sizes in the solar wind. Further, We compare the wavelet cross correlation spectrum of P th -P B and N e -B. We notice that the two spectra are similar in general. Thus this result confirms that the relation between P th -P B and N e -B are consistent with each other in the PBSs we study. Moreover, we compare the power spectrum density (PSD) of relative N e fluctuation with our previous work based on Cluster measurements. The two spectra show similar trend with Komolgorov’s -5/3 as their slopes. This may imply the similarity of the structures observed by both WIND and Cluster spacecrafts. Finally, we discuss the possible formation mechanisms for these multi-scale pressure-balanced structures. Our result is important to support the existence of multi-scale PBSs from one-hour scale down to one-minute, and is helpful to understand the role of compressive fluctuation in the solar wind turbulence dominated by Alfvénic cascading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号