首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Owen T  Mahaffy P  Niemann HB  Atreya S  Donahue T  Bar-Nun A  de Pater I 《Nature》1999,402(6759):269-270
The four giant planets in the Solar System have abundances of 'metals' (elements heavier than helium), relative to hydrogen, that are much higher than observed in the Sun. In order to explain this, all models for the formation of these planets rely on an influx of solid planetesimals. It is generally assumed that these planetesimals were similar, if not identical, to the comets from the Oort cloud that we see today. Comets that formed in the region of the giant planets should not have contained much neon, argon and nitrogen, because the temperatures were too high for these volatile gases to be trapped effectively in ice. This means that the abundances of those elements on the giant planets should be approximately solar. Here we show that argon, krypton and xenon in Jupiter's atmosphere are enriched to the same extent as the other heavy elements, which suggests that the planetesimals carrying these elements must have formed at temperatures lower than predicted by present models of giant-planet formation.  相似文献   

2.
Alan Stern S 《Nature》2003,424(6949):639-642
Comets are remnants from the time when the outer planets formed, approximately 4-4.5 billion years ago. They have been in storage since then in the Oort cloud and Kuiper belt-distant regions that are so cold and sparsely populated that it was long thought that comets approaching the Sun were pristine samples from the time of Solar System formation. It is now recognized, however, that a variety of subtle but important evolutionary mechanisms operate on comets during their long storage, so they can no longer be regarded as wholly pristine.  相似文献   

3.
The recent breakup of an asteroid in the main-belt region   总被引:1,自引:0,他引:1  
Nesvorný D  Bottke WF  Dones L  Levison HF 《Nature》2002,417(6890):720-771
The present population of asteroids in the main belt is largely the result of many past collisions. Ideally, the asteroid fragments resulting from each impact event could help us understand the large-scale collisions that shaped the planets during early epochs. Most known asteroid fragment families, however, are very old and have therefore undergone significant collisional and dynamical evolution since their formation. This evolution has masked the properties of the original collisions. Here we report the discovery of a family of asteroids that formed in a disruption event only 5.8 +/- 0.2 million years ago, and which has subsequently undergone little dynamical and collisional evolution. We identified 39 fragments, two of which are large and comparable in size (diameters of approximately 19 and approximately 14 km), with the remainder exhibiting a continuum of sizes in the range 2-7 km. The low measured ejection velocities suggest that gravitational re-accumulation after a collision may be a common feature of asteroid evolution. Moreover, these data can be used to check numerical models of larger-scale collisions.  相似文献   

4.
Song I  Zuckerman B  Weinberger AJ  Becklin EE 《Nature》2005,436(7049):363-365
The slow but persistent collisions between asteroids in our Solar System generate a tenuous cloud of dust known as the zodiacal light (because of the light the dust reflects). In the young Solar System, such collisions were more common and the dust production rate should have been many times larger. Yet copious dust in the zodiacal region around stars much younger than the Sun has rarely been found. Dust is known to orbit around several hundred main-sequence stars, but this dust is cold and comes from a Kuiper-belt analogous region out beyond the orbit of Neptune. Despite many searches, only a few main-sequence stars reveal warm (> 120 K) dust analogous to zodiacal dust near the Earth. Signs of planet formation (in the form of collisions between bodies) in the regions of stars corresponding to the orbits of the terrestrial planets in our Solar System have therefore been elusive. Here we report an exceptionally large amount of warm, small, silicate dust particles around the solar-type star BD+20,307 (HIP 8920, SAO 75016). The composition and quantity of dust could be explained by recent frequent or huge collisions between asteroids or other 'planetesimals' whose orbits are being perturbed by a nearby planet.  相似文献   

5.
Thommes EW  Duncan MJ  Levison HF 《Nature》1999,402(6762):635-638
Planets are believed to have formed through the accumulation of a large number of small bodies. In the case of the gas-giant planets Jupiter and Saturn, they accreted a significant amount of gas directly from the protosolar nebula after accumulating solid cores of about 5-15 Earth masses. Such models, however, have been unable to produce the smaller ice giants Uranus and Neptune at their present locations, because in that region of the Solar System the small planetary bodies will have been more widely spaced, and less tightly bound gravitationally to the Sun. When applied to the current Jupiter-Saturn zone, a recent theory predicts that, in addition to the solid cores of Jupiter and Saturn, two or three other solid bodies of comparable mass are likely to have formed. Here we report the results of model calculations that demonstrate that such cores will have been gravitationally scattered outwards as Jupiter, and perhaps Saturn, accreted nebular gas. The orbits of these cores then evolve into orbits that resemble those of Uranus and Neptune, as a result of gravitational interactions with the small bodies in the outer disk of the protosolar nebula.  相似文献   

6.
Tegler SC  Romanishin W 《Nature》2000,407(6807):979-981
Kuiper-belt objects (KBOs) are an ancient reservoir of comets beyond Neptune's orbit. Some of these objects were recently found to have the reddest optical colours in the Solar System, but the number of objects for which accurate colours were available was too small for any correlation to be discerned between colour and physical or dynamical properties, which might shed light on the origin of these objects. Here we report that all nine of the KBOs in our survey on near-circular (low-eccentricity) orbits with perihelion distances larger than 40 AU have extremely red surfaces, thereby connecting an observable property with a dynamical class. Of the objects with orbital eccentricities greater than 0.1, about half are also very red, while the rest have colours similar to the Sun, meaning that reflected sunlight is not strongly modified by the objects' surface properties. In addition, of the 13 'classical' KBOs (those with semimajor axis a approximately 45 AU and eccentricity e < 0.15), the ten that are very red are in orbits with small angles of inclination to the ecliptic, whereas the three with solar colours are all in high-inclination orbits. We suggest that these three 'grey' classical KBOs may be part of a dynamical group that is separate from the 'red' classical KBOs.  相似文献   

7.
Planets that orbit their parent star at less than about one astronomical unit (1?AU is the Earth-Sun distance) are expected to be engulfed when the star becomes a red giant. Previous observations have revealed the existence of post-red-giant host stars with giant planets orbiting as close as 0.116?AU or with brown dwarf companions in tight orbits, showing that these bodies can survive engulfment. What has remained unclear is whether planets can be dragged deeper into the red-giant envelope without being disrupted and whether the evolution of the parent star itself could be affected. Here we report the presence of two nearly Earth-sized bodies orbiting the post-red-giant, hot B subdwarf star KIC 05807616 at distances of 0.0060 and 0.0076?AU, with orbital periods of 5.7625 and 8.2293 hours, respectively. These bodies probably survived deep immersion in the former red-giant envelope. They may be the dense cores of evaporated giant planets that were transported closer to the star during the engulfment and triggered the mass loss necessary for the formation of the hot B subdwarf, which might also explain how some stars of this type did not form in binary systems.  相似文献   

8.
A low mass for Mars from Jupiter's early gas-driven migration   总被引:1,自引:0,他引:1  
Jupiter and Saturn formed in a few million years (ref. 1) from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only ~100,000 years (ref. 2). Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later, and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 au is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 au, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 au; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 au and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.  相似文献   

9.
Our Solar System was formed from a cloud of gas and dust. Most of the dust mass is contained in amorphous silicates, yet crystalline silicates are abundant throughout the Solar System, reflecting the thermal and chemical alteration of solids during planet formation. (Even primitive bodies such as comets contain crystalline silicates.) Little is known about the evolution of the dust that forms Earth-like planets. Here we report spatially resolved detections and compositional analyses of these building blocks in the innermost two astronomical units of three proto-planetary disks. We find the dust in these regions to be highly crystallized, more so than any other dust observed in young stars until now. In addition, the outer region of one star has equal amounts of pyroxene and olivine, whereas the inner regions are dominated by olivine. The spectral shape of the inner-disk spectra shows surprising similarity with Solar System comets. Radial-mixing models naturally explain this resemblance as well as the gradient in chemical composition. Our observations imply that silicates crystallize before any terrestrial planets are formed, consistent with the composition of meteorites in the Solar System.  相似文献   

10.
Konacki M 《Nature》2005,436(7048):230-233
Hot Jupiters are gas-giant planets orbiting with periods of 3-9 days around Sun-like stars. They are believed to form in a disk of gas and condensed matter at or beyond approximately 2.7 astronomical units (au-the Sun-Earth distance) from their parent star. At such distances, there exists a sufficient amount of solid material to produce a core capable of capturing enough gas to form a giant planet. Subsequently, they migrate inward to their present close orbits. Here I report the detection of an unusual hot Jupiter orbiting the primary star of a triple stellar system, HD 188753. The planet has an orbital period of 3.35 days and a minimum mass of 1.14 times that of Jupiter. The primary star's mass is 1.06 times that of the Sun, 1.06 M(\circ). The secondary star, itself a binary stellar system, orbits the primary at an average distance of 12.3 au with an eccentricity of 0.50. The mass of the secondary pair is 1.63 M(\circ). Such a close and massive secondary would have truncated a disk around the primary to a radius of only approximately 1.3 AU (ref. 4) and might have heated it up to temperatures high enough to prohibit giant-planet formation, leaving the origin of this planet unclear.  相似文献   

11.
Brittain SD  Rettig TW 《Nature》2002,418(6893):57-59
Massive planets have now been found orbiting about 80 stars. A long outstanding question critical to theories of planet formation has been the timescale on which gas-giant planets form; in particular, stars more massive than the Sun may blow away the surrounding gas associated with their formation more quickly than it can be accumulated by the protoplanetary cores. Evidence for a protoplanet around a Herbig AeBe star (such stars are 2 3 times more massive than the Sun) would constrain the timescale of planet formation. Here we report the detection of CO and H(3)(+) emission from the 5-10-million-year-old Herbig AeBe star HD141569. We interpret the CO data as indicating that the inner disk surrounding the star is past the early phase of accretion and planetesimal formation, and that most of the gas has been cleared out to a distance of more than 17 astronomical units. CO effectively destroys H(3)(+) (ref. 2), so their presence in the same source is surprising. Moreover, H(3)(+) line emission has previously been detected only from the atmospheres of the giant planets in the Solar System. The H(3)(+) and CO may therefore be distributed in the disk at different circumstellar distances, or, alternatively, H(3)(+) may be located in the extended envelope of a protoplanet.  相似文献   

12.
Marois C  Zuckerman B  Konopacky QM  Macintosh B  Barman T 《Nature》2010,468(7327):1080-1083
High-contrast near-infrared imaging of the nearby star HR 8799 has shown three giant planets. Such images were possible because of the wide orbits (>25?astronomical units, where 1?au is the Earth-Sun distance) and youth (<100?Myr) of the imaged planets, which are still hot and bright as they radiate away gravitational energy acquired during their formation. An important area of contention in the exoplanet community is whether outer planets (>10?au) more massive than Jupiter form by way of one-step gravitational instabilities or, rather, through a two-step process involving accretion of a core followed by accumulation of a massive outer envelope composed primarily of hydrogen and helium. Here we report the presence of a fourth planet, interior to and of about the same mass as the other three. The system, with this additional planet, represents a challenge for current planet formation models as none of them can explain the in situ formation of all four planets. With its four young giant planets and known cold/warm debris belts, the HR 8799 planetary system is a unique laboratory in which to study the formation and evolution of giant planets at wide (>10?au) separations.  相似文献   

13.
该文以变质量质点动力学方程(密歇尔斯基方程)为基础,建立了变质量少体问题的运动方程,并利用小参数方法得到了变质量少体问题的分析解。文中还将研究结果应用到彗星运动上,讨论彗星轨道中非引力效应。指出非引力效应会导致某些彗星轨道半长径和偏心率等产生长期和周期变化,这些变化将明显地影响彗星运动的周期以及过近日点的时间和地点。因此在这些彗星精密定轨和探讨其轨道动力演化时应当考虑这种非引力效应。文末还具体计算了恩克彗星轨道中非引力效应。  相似文献   

14.
Ford EB  Lystad V  Rasio FA 《Nature》2005,434(7035):873-876
Doppler spectroscopy has detected 152 planets around nearby stars. A major puzzle is why many of their orbits are highly eccentric; all planets in our Solar System are on nearly circular orbits, as is expected if they formed by accretion processes in a protostellar disk. Several mechanisms have been proposed to generate large eccentricities after planet formation, but so far there has been little observational evidence to support any particular model. Here we report that the current orbital configuration of the three giant planets around upsilon Andromedae (upsilon And) probably results from a close dynamical interaction with another planet, now lost from the system. The planets started on nearly circular orbits, but chaotic evolution caused the outer planet (upsilon And d) to be perturbed suddenly into a higher-eccentricity orbit. The coupled evolution of the system then causes slow periodic variations in the eccentricity of the middle planet (upsilon And c). Indeed, we show that upsilon And c periodically returns to a very nearly circular state every 6,700 years.  相似文献   

15.
For decades, the source of Earth's volatiles, especially water with a deuterium-to-hydrogen ratio (D/H) of (1.558?±?0.001)?×?10(-4), has been a subject of debate. The similarity of Earth's bulk composition to that of meteorites known as enstatite chondrites suggests a dry proto-Earth with subsequent delivery of volatiles by local accretion or impacts of asteroids or comets. Previous measurements in six comets from the Oort cloud yielded a mean D/H ratio of (2.96?±?0.25)?×?10(-4). The D/H value in carbonaceous chondrites, (1.4?±?0.1)?×?10(-4), together with dynamical simulations, led to models in which asteroids were the main source of Earth's water, with ≤10 per cent being delivered by comets. Here we report that the D/H ratio in the Jupiter-family comet 103P/Hartley 2, which originated in the Kuiper belt, is (1.61?±?0.24)?×?10(-4). This result substantially expands the reservoir of Earth ocean-like water to include some comets, and is consistent with the emerging picture of a complex dynamical evolution of the early Solar System.  相似文献   

16.
Asphaug E  Agnor CB  Williams Q 《Nature》2006,439(7073):155-160
Terrestrial planet formation is believed to have concluded in our Solar System with about 10 million to 100 million years of giant impacts, where hundreds of Moon- to Mars-sized planetary embryos acquired random velocities through gravitational encounters and resonances with one another and with Jupiter. This led to planet-crossing orbits and collisions that produced the four terrestrial planets, the Moon and asteroids. But here we show that colliding planets do not simply merge, as is commonly assumed. In many cases, the smaller planet escapes from the collision highly deformed, spun up, depressurized from equilibrium, stripped of its outer layers, and sometimes pulled apart into a chain of diverse objects. Remnants of these 'hit-and-run' collisions are predicted to be common among remnant planet-forming populations, and thus to be relevant to asteroid formation and meteorite petrogenesis.  相似文献   

17.
Origin of the orbital architecture of the giant planets of the Solar System   总被引:3,自引:0,他引:3  
Tsiganis K  Gomes R  Morbidelli A  Levison HF 《Nature》2005,435(7041):459-461
Planetary formation theories suggest that the giant planets formed on circular and coplanar orbits. The eccentricities of Jupiter, Saturn and Uranus, however, reach values of 6 per cent, 9 per cent and 8 per cent, respectively. In addition, the inclinations of the orbital planes of Saturn, Uranus and Neptune take maximum values of approximately 2 degrees with respect to the mean orbital plane of Jupiter. Existing models for the excitation of the eccentricity of extrasolar giant planets have not been successfully applied to the Solar System. Here we show that a planetary system with initial quasi-circular, coplanar orbits would have evolved to the current orbital configuration, provided that Jupiter and Saturn crossed their 1:2 orbital resonance. We show that this resonance crossing could have occurred as the giant planets migrated owing to their interaction with a disk of planetesimals. Our model reproduces all the important characteristics of the giant planets' orbits, namely their final semimajor axes, eccentricities and mutual inclinations.  相似文献   

18.
An abundant population of small irregular satellites around Jupiter   总被引:1,自引:0,他引:1  
Sheppard SS  Jewitt DC 《Nature》2003,423(6937):261-263
Irregular satellites have eccentric orbits that can be highly inclined or even retrograde relative to the equatorial planes of their planets. These objects cannot have formed by circumplanetary accretion, unlike the regular satellites that follow uninclined, nearly circular and prograde orbits. Rather, they are probably products of early capture from heliocentric orbits. Although the capture mechanism remains uncertain, the study of irregular satellites provides a window on processes operating in the young Solar System. Families of irregular satellites recently have been discovered around Saturn (thirteen members, refs 6, 7), Uranus (six, ref. 8) and Neptune (three, ref. 9). Because Jupiter is closer than the other giant planets, searches for smaller and fainter irregular satellites can be made. Here we report the discovery of 23 new irregular satellites of Jupiter, so increasing the total known population to 32. There are five distinct satellite groups, each dominated by one relatively large body. The groups were most probably produced by collisional shattering of precursor objects after capture by Jupiter.  相似文献   

19.
The giant planets in the Solar System each have two groups of satellites. The regular satellites move along nearly circular orbits in the planet's orbital plane, revolving about it in the same sense as the planet spins. In contrast, the so-called irregular satellites are generally smaller in size and are characterized by large orbits with significant eccentricity, inclination or both. The differences in their characteristics suggest that the regular and irregular satellites formed by different mechanisms: the regular satellites are believed to have formed in an accretion disk around the planet, like a miniature Solar System, whereas the irregulars are generally thought to be captured planetesimals. Here we report the discovery of 12 irregular satellites of Saturn, along with the determinations of their orbits. These orbits, along with the orbits of irregular satellites of Jupiter and Uranus, fall into groups on the basis of their orbital inclinations. We interpret this result as indicating that most of the irregular moons are collisional remnants of larger satellites that were fragmented after capture, rather than being captured independently.  相似文献   

20.
There is a general consensus that planets form within disks of dust and gas around newly born stars. Details of their formation process, however, are still a matter of ongoing debate. The timescale of planet formation remains unclear, so the detection of planets around young stars with protoplanetary disks is potentially of great interest. Hitherto, no such planet has been found. Here we report the detection of a planet of mass (9.8+/-3.3)M(Jupiter) around TW Hydrae (TW Hya), a nearby young star with an age of only 8-10 Myr that is surrounded by a well-studied circumstellar disk. It orbits the star with a period of 3.56 days at 0.04 au, inside the inner rim of the disk. This demonstrates that planets can form within 10 Myr, before the disk has been dissipated by stellar winds and radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号