首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 191 毫秒
1.
采用具有磷酸盐还原功能的菌株,对模拟的食品发酵废水进行厌氧除磷工艺研究。通过向厌氧反应器投加前期筛选得到的磷酸盐还原菌进行污泥驯化、正交试验和单因素实验,确定食品发酵废水厌氧除磷工艺的最佳工艺条件。研究结果表明:经过12个周期的驯化,使投加菌株的污泥具有良好的生化和除磷性能,反应器出水CODCr和总磷质量浓度分别为319.60mg/L和13.58mg/L,相应去除率分别为69.43%和20.95%。厌氧除磷工艺最佳工艺条件为培养温度30℃、pH值为7、氮源为蛋白胨+NH4Cl+NaNO3,总磷质量浓度为17.5mg/L,总磷去除率可达37.96%,产生的PH3的磷含量占总磷去除量的24.61%。  相似文献   

2.
目的研究反应条件对预碱解-电化学法处理污泥的影响效果,确定最适污泥破解条件.方法通过改变碱性物质种类、投量比以及不同电压梯度,观察分析预碱解-电化学方法破解污泥的效果.结果 Na OH投加量为16 mmol,在电压梯度为7 V/cm时进行反应,可在能耗相对较低下得到较好的试验效果.反应60 min后ρ(SCOD)由86.9 mg/L升至1 151.1 mg/L,污泥MLSS去除率达15.8%,ρ(MLVSS)与ρ(MLSS)比值从83.3%降至69.5%.显微镜分析污泥絮体结构随反应时间的延长而逐渐消失.结论预碱解-电化学方法可以显著破坏污泥絮体结构,溶解微生物细胞,实现污泥减量并改善污泥沉降性能.  相似文献   

3.
目前的番茄酱废水处理设施,由于频繁驯化污泥,存在耗时较长、处理能力较差和不受控制等缺点,造成了较大的二次污染。本文针对前期筛选获得的番茄酱加工废水处理菌群,研究了人工构建菌群生成污泥时的初始菌株配比及营养条件对污泥形成的影响。试验结果表明:菌株的初始比例对污泥的形成和处理能力有较大影响,但并不是去除能力越强的菌株越多形成的污泥效果越好;降解菌株和沉降菌株初始重量比例1∶1时,污泥生长最快(从1000mg/L增至6000mg/L耗时4d)、污泥处理能力最强(TOC去除率超过96%)、污泥结构最好(粒径正态分布且集中于30μm)。研究结果显示:通过控制菌株比例可以有效的缩短污泥培养时间和提高处理能力,既节约了处理成本,又提高了出水水质。  相似文献   

4.
反硝化除磷-诱导结晶磷回收工艺试验   总被引:1,自引:0,他引:1  
对反硝化除磷-诱导结晶磷回收工艺中硝化污泥和除磷污泥进行富集驯化试验,并通过化学分析、荧光原位杂交分析和电镜扫描考察污泥富集驯化效果以及富集驯化前后微生物种群结构和形态的变化.研究结果表明:经过55d的先厌氧/好氧(30d)、后厌氧/缺氧(25d)模式富集驯化后,磷去除率稳定在95%以上,且表现出明显的厌氧释磷和缺氧过量吸磷能力,其单位释磷量和吸磷量分别为8.47和11.13mg P/g MLSS;在好氧条件下,对接种污泥进行25d的强化富集驯化后,其氨氮去除率由78.5%提高到96.5%,明显增强了其硝化能力;污泥富集驯化前后聚磷菌和硝化细菌(AOB+NOB)质量分数分别由接种污泥的9.3%和45.3%增加到68.9%和74.7%,且AOB数量要多于NOB的分别占46.2%和28.5%;聚磷菌多呈杆状,而硝化细菌则以尺寸较小的球菌和杆菌组成,且以团聚体的形式存在.研究表明:该工艺可有效地克服传统单污泥脱氮除磷系统的不足,具有明显的经济效益和环境效益.  相似文献   

5.
采集某城市污水处理厂的A/O工艺回流活性污泥作为污泥样品,利用SBR反应器,以硝酸盐为电子受体,在低碳源下,培养和驯化反硝化除磷菌。第一阶段采用厌氧/好氧/沉淀/排水的运行方式10周期,第二阶段采用厌氧/好氧/缺氧/好氧/沉淀/排水运行方式40周期。反硝化脱氮除磷性能的测试结果表明,经培养驯化得到的反硝化除磷菌处理低碳源废水,PO43-P的去除率达96%,出水浓度稳定在0.4mg/L 以下;NH4+-N去除率达78%,出水浓度稳定在3mg/L 以下;COD的去除率达86%,出水浓度稳定在20mg/L以下;表明采用SBR反应器进行反硝化菌的培养驯化是可行的。  相似文献   

6.
从养殖池塘中分离筛选具有高效降解氨氮和亚硝酸盐氮能力的异养硝化菌,并进一步研究其组合菌群的硝化性能.分别以NH_4Cl和NaNO_2为唯一氮源,从高密度养殖池塘淤泥、水样和鱼体肠道样品中进行菌株分离筛选,通过16S rDNA测序进行菌株鉴定,并在好氧条件下考察菌株去除氨氮和亚硝酸盐氮的能力;选择降解效果较好的菌株进行定量组合培养,通过单因素实验对混合培养条件包括碳源类型、碳氮比(C/N)、盐度、初始pH等进行优化;在最优条件下研究单一菌株、二元组合和三元组合去除氨氮的效果以及亚硝态氮和硝态氮的积累情况.分离得到8株异养硝化细菌,经异养硝化性能测试获得3株降解氨氮和亚硝态氮效果较好的菌株,分别为巨大芽孢杆菌W3-1、枯草芽孢杆菌YZN-2和植物乳杆菌HT1-1,72 h氨氮降解率分别为71.2%、61.3%和60.7%,亚硝态氮降解率分别为38.7%、35.6%和37.6%.经过对组合菌群培养优化后,得出以下结果:以柠檬酸钠为碳源,C/N为20,NaCl质量浓度为5 g/L,初始pH值为6时,24 h内的平均降解速率达2.05 mg/(L·h~(-1));单一菌株与二元和三元定量组合在培养前期9 h内氨氮降解速率有显著差异,W3-1单独培养的降解速率为1.61 mg/(L·h~(-1)),而W3-1+HT1-1的降解速率提高到2.51 mg/(L·h~(-1)),W3-1+YZN-2+HT1-1的速率提高到2.49 mg/(L·h~(-1)).由上述结果可知,菌株W3-1、YZN-2和HT1-1脱氮能力较强,其中植物乳杆菌和芽孢杆菌组合在前期有利于提高芽孢杆菌氨氮降解速率.本研究的结果为污水处理工艺中硝化系统的快速启动以及脱氮菌剂的开发提供了理论参考.  相似文献   

7.
将异养硝化-好氧反硝化菌株投加到SBR反应器中,对含有优势菌株的污泥进行培养驯化、优化运行周期的操作,使其具有良好的生化、硝化和反硝化性能。运行SBR反应器处理模拟食品发酵废水(CODCr、氨氮、总氮质量浓度分别大于等于600,80,85mg/L),经处理后的出水CODCr、氨氮和总氮质量浓度分别为56,0.65,14mg/L。后期向处理后的出水投加20mg/L的聚合氯化铝混凝沉淀进一步降低出水CODCr,至此出水CODCr和氮类化合物质量浓度已达到GB 18918—2002《城镇污水处理厂污染物排放标准》中的一级A标准(出水CODCr、氨氮、总氮质量浓度分别小于50,5,15mg/L)。  相似文献   

8.
印染废水生物处理菌株的选育及降解效果   总被引:4,自引:0,他引:4       下载免费PDF全文
探讨生物处理印染废水,用选择性培养,从自然界中筛选出能降解印染废水中主要污染物(变性淀粉、PVA)的微生物。通过梯度筛选驯化,优选出两株适应能力强、活力旺盛的菌株为P02-1和P02-2;并在富集培养基上分别扩大培养,以形成足够体积的活性污泥;构建曝气池,定时定量加入含有变性淀粉或PVA的培养基进行培养实验,测定降解效果;两菌复合处理,当进入废水COD值为2160mg/L和4080mg/L时,出水COD值分别降到313.8mg/L与1272mg/L,其去除率分别达85.5%和68.8%。  相似文献   

9.
采用SBR反应器,系统地研究不同质量浓度Zn(Ⅱ)长期作用对好氧颗粒污泥基本性能和污染物去除功效的影响。试验结果表明:当ρ(Zn(Ⅱ))≤5 mg/L时,Zn(Ⅱ)对好氧颗粒污泥基本性能与污染物去除功效影响较小;当ρ(Zn(Ⅱ))≥10 mg/L时,Zn(Ⅱ)会导致好氧颗粒污染物去除功效降低,混合液悬浮固体(MLSS)质量浓度、沉降速率、污泥粒径与结构发生改变。10 mg/L以上的Zn(Ⅱ)长期作用会导致污泥粒径变小,结构松散,进而导致污泥沉降性能变差,最终引起ρ(MLSS)下降。Zn(Ⅱ)作用76 d后,投加10 mg/L和15 mg/L Zn(Ⅱ)的反应器内NH+4-N、COD去除率分别减低为84.3%和75.1%、90.1%和85.7%;ρ(MLSS)分别降至3 658 mg/L和3 225 mg/L;SVI分别升高至94 m L/g和99 m L/g;颗粒污泥的平均粒径分别降至0.58 mm和0.37 mm,部分颗粒污泥解体。  相似文献   

10.
对经过电解预处理的氨基乙酸生产废水进一步采用UASB-SBBR工艺处理的可行性进行了试验研究。试验表明:在UASB启动阶段,接种高活性厌氧颗粒污泥后,在调节进水水质、合理控制进水COD质量浓度的条件下培养驯化,厌氧颗粒污泥能适应降解氨基乙酸废水水质,UASB的COD平均去除率达到60.8%;厌氧出水再经SBBR处理后,出水COD质量浓度可降低到150mg/L以下,COD平均去除率为96.1%;出水氨氮质量浓度低于25 mg/L。  相似文献   

11.
污泥处理条件对臭氧破解污泥能力的影响   总被引:1,自引:0,他引:1  
利用臭氧强氧化性,使污泥细胞破解有机质溶出,实现活性污泥的全循环再生化处理,达到污泥“零排放”的目的.本研究改变处理条件(臭氧投加量、反应时间和空气进气量等),系统地检测反应前后污泥混合液的各项指标(总悬浮固体、挥发性悬浮固体、溶解性化学需氧量、氨氮、总磷、污泥沉降比),探讨臭氧氧化破解污泥反应的机理.由实验可知,在臭氧氧化破解污泥实验中,投加的臭氧量(相对于总悬浮固体)为0.27 g/g,反应时间为30 min,空气进气量为2.0 L/min时,破解的效果达到最佳,总悬浮固体的减少量达到2.8 g/L.气体流量越大破解效果越好,在空气进气量为2.0 L/min的条件下,臭氧氧化破解污泥实验效果最佳.随着臭氧投加量的增加,MLSS减少速率将由慢到快,然后趋于平缓,最佳投放量为0.25 g/g时,总悬浮固体减少量为1.42 g/L,SCOD的增加量为626 mg/L,氨氮和总磷的增加量分别为10.7、1.068 mg/L.  相似文献   

12.
通过向处理系统中投加填料对污泥减量的效果进行了研究.试验结果表明:投加填料后处理系统的污泥浓度平均值为3 509 mg/L,出水CODCr平均值为42 mg/L,CODCr平均去除率为88%;未投加填料处理系统的污泥浓度平均值为4 815 mg/L,出水CODCr平均值为77 mg/L,CODCr平均去除率为77%.投加填料处理系统的污泥浓度、出水CODCr值均低于未投加填料的处理系统,因此是一种可行的剩余污泥减量方法.  相似文献   

13.
通过对三种组成差别较大的粉煤灰(FA)的吸附性能实验,筛选出适宜作微生物吸附载体的FA.根据污水处理系统的MLSS量选定FA投加量为2 g/L.加入粉煤灰的活性污泥处理系统,污泥絮体大,沉降速率明显提高;污水处理系统运行稳定;对CODcr的去除率为87%,对氨氮的去除率为82%,相对于未加粉煤灰的活性污泥系统有所提高.  相似文献   

14.
选用螺蛳为模拟实验生物, 利用其摄食污泥的特性, 考察了不同环境条件下的摄食率及污泥减量效果, 从而实现污泥减量化的目的. 结果表明, 螺蛳的污泥减量速率随投放量和初始混合液悬浮固体浓度(mixed liquid suspended solids, MLSS)的升高而呈上升趋势. 通过模拟不同生存环境(高氧、低氧)的实验对比表明, 在溶解氧(dissolved oxygen, DO)充足的条件下螺蛳具有良好的污泥减量效果. 螺蛳对MLSS、混合液挥发性悬浮固体浓度(mixed liquor volatile suspended solids, MLVSS)的去除率可分别达到40.01%, 47.54%, 符合污泥稳定化的要求.  相似文献   

15.
应用离子束为诱变因素,对活性污泥进行辐照处理,研究经驯化培育后,处理一定浓度的焦化废水的结果表明:活性污泥的性能及数量的评价指标、生化指标、污泥增长率以及与污染负荷等有明显的变化,经离子束照射处理后活性污泥的SV30值为11.0%~14.0%,SVI值为34.97~42.02 mL/g,辐照后的活性污泥SVI值低于未辐照活性污泥的SVI值,MLSS值在2 940~3 515 mg/L,污泥增长率变化范围为17.17%~-2.00%,最佳CODcr去除率为92.17%,最佳氨氮去除率可达到94.64%,挥发酚去除率效果最好,可达到99.83%,处理效果优于未辐照前。  相似文献   

16.
复合式MBR处理化学合成类制药废水研究   总被引:2,自引:0,他引:2  
采用复合式膜生物反应器(CMBR)对化学合成类制药废水的厌氧反应器出水进行处理研究,系统在不同的水力停留时间(HRT)下,各运行了一段时间,以此寻求最短HRT.实验结果表明,当HRT为10 h和5 h时,进水COD质量浓度在915.9-1 937.5 mg/L之间波动,复合式MBR的出水COD分别为62.5-141.7 mg/L和76.2-149.7 mg/L,COD去除率分别为88.7%-96%和85.7%-94.3%,均可以满足达标排放标准要求(150 mg/L).当HRT为3 h时,出水COD质量浓度为176.2-291.7 mg/L,不能满足达标排放标准要求.复合式MBR处理化学合成类制药废水的最佳HRT应控制在5 h.污泥质量浓度(MLSS)与COD去除的关系表明,为了得到更好的COD去除率,复合式MBR的最佳MLSS应控制在7 000 mg/L左右.  相似文献   

17.
以宜昌某制药厂排放废水为碳源和氮源,经过驯化和筛选得到有特异性降解能力的菌株.选择三峡大学求索溪、校医院旁池塘和教师公寓附近池塘这3处不同类型的污泥富集培养,经过第1次驯化发现求索溪污泥中菌株的降解能力最好,降解率约为39.3%.在第1次驯化的接种源基础上继续进行第2次和第3次驯化,发现该菌株的降解能力得到了较大程度的提升,降解率分别为65.5%和78.0%.经过划线分离和纯化,得到对制药厂废水具有极强降解能力的优良菌株QA.用单因素优化法确定了QA菌株降解制药废水的最适条件为温度30℃,pH 7.0,底物体积分数为600 mL/L,且在QA菌株的最适条件下,其降解制药废水70 h时效果最好.  相似文献   

18.
污泥浓度对膜生物反应器处理焦化废水的影响   总被引:3,自引:0,他引:3  
为提高膜生物反应器对焦化废水的处理效果,在不同污泥质量浓度条件下进行膜生物反应器处理焦化废水实验,分析污泥质量浓度对污染物去除效果及膜污染的影响。结果表明:污泥质量浓度为4 000 mg/L左右时处理效果最佳,出水酚类质量浓度为5.88 mg/L,去除率达98.39%;NH3-N的质量浓度维持在15 mg/L,去除率为87%;COD的出水质量浓度为31 mg/L,去除率达到98.4%。污泥质量浓度在3 000~5 000 mg/L时,膜通量变化幅度较小,6 000 mg/L时膜通量急剧下降。  相似文献   

19.
采用ASBR装置,在常温条件下对影响污泥酸性发酵的主要因素如排泥间隔时间、pH、HRT等进行了研究。确定了ASBR处理污水厂污泥的最佳酸性发酵工况,即:温度22℃,进料VS 20g/L,HRT 3.0d,间隔2d排泥,不调节pH。此时,污泥的产酸率为0.128,VS去除率为34%,发酵液的碱度为570~839mg/L,NH3-N的质量浓度为280.1~318.6mg/L,PO43-的质量浓度为29.45~44.32mg/L。  相似文献   

20.
在新建的大型城市污水处理厂,生物启动时,不投加生物种泥,在不同时段,采用不同流量的连续进水,通过调整曝气池溶解氧来培养其活性污泥,20 d后,曝气池的污泥悬浮质量浓度(MLSS)可稳定在2 500 mg/L左右,且其活性良好,二沉池出水化学需氧量(COD)小于60 mg/L,总磷(TP)小于1.0 mg/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号