首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 465 毫秒
1.
Charcot-Marie-Tooth disease type 1A (CMT1A) is associated with a DNA duplication at chromosome 17p11.2. In view of the point mutation in the gene for peripheral myelin protein pmp-22/gas-3 in Trembler mice, a murine model for CMT1A, we have analysed whether this gene is altered in CMT1A. Here we show that the human homologue of the murine pmp-22 gene is located within the CMT1A DNA duplication, which is a direct repeat and does not interrupt the coding region of PMP-22. Expression of PMP-22 in CMT1A fibroblasts is similar to expression in control fibroblasts. Increased gene dosage or altered PMP-22 expression in the peripheral nervous system are therefore possible mechanisms by which PMP-22 is involved in CMT1A.  相似文献   

2.
Charcot-Marie-Tooth disease 1A (CMT1A) is a hereditary demyelinating peripheral neuropathy, associated with a DNA duplication on chromosome 17p11.2. A related disorder in the mouse, trembler (Tr), maps to mouse chromosome 11 which has syntenic homology to human chromosome 17p. Recently, the peripheral myelin protein-22 (pmp-22) gene was identified as the likely Tr locus. We have constructed a partial yeast artificial chromosome contig spanning the CMT1A gene region and mapped the PMP-22 gene to the duplicated region. These observations further implicate PMP-22 as a candidate gene for CMT1A, and suggest that over-expression of this gene may be one mechanism that produces the CMT1A phenotype.  相似文献   

3.
Charcot-Marie-Tooth disease type 1A (CMT1A) is an autosomal dominant peripheral neuropathy associated with a large DNA duplication on the short arm of human chromosome 17. The trembler (Tr) mouse serves as a model for CMT1A because of phenotypic similarities and because the Tr locus maps to mouse chromosome 11 in a region of conserved synteny with human chromosome 17. Recently, the peripheral myelin gene Pmp-22 was found to carry a point mutation in Tr mice. We have isolated cDNA and genomic clones for human PMP-22. The gene maps to human chromosome 17p11.2-17p12, is expressed at high levels in peripheral nervous tissue and is duplicated, but not disrupted, in CMT1A patients. Thus, we suggest that a gene dosage effect involving PMP-22 is at least partially responsible for the demyelinating neuropathy seen in CMT1A.  相似文献   

4.
We have investigated the peripheral myelin protein gene, PMP-22, in a family with Charcot-Marie-Tooth disease type 1A (CMT1A). The DNA duplication commonly found in CMT1A was absent in this family, but strong linkage existed between the disease and the CMT1A marker VAW409R3 on chromosome 17p11.2. We found a point mutation in PMP-22 which was completely linked with the disease. The mutation, a proline for leucine substitution in the first putative transmembrane domain, is identical to that recently found in the Trembler-J mouse. The presence of this PMP-22 defect in this CMT1A family and the location of PMP-22 within the DNA duplication associated with CMT1A suggest that both structural alteration and overexpression of PMP-22 may lead to the disease.  相似文献   

5.
Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited peripheral neuropathy in humans, characterized electrophysiologically by decreased nerve conduction velocities (NCVs). CMT1A is associated with a large submicroscopic DNA duplication in proximal 17p. In this report we demonstrate that a patient with a cytogenetically visible duplication, dup(17)(p11.2p12), has decreased NCV. Molecular analysis demonstrated this patient was duplicated for all the DNA markers duplicated in CMT1A as well as markers both proximal and distal to the CMT1A duplication. These data support the hypothesis that the CMT1A phenotype can result from a gene dosage effect.  相似文献   

6.
A gene mutated in Charcot-Marie-Tooth disease type 4B (CMT4B), an autosomal recessive demyelinating neuropathy with myelin outfoldings, has been mapped on chromosome 11q22. Using a positional-cloning strategy, we identified in unrelated CMT4B patients mutations occurring in the gene MTMR2, encoding myotubularin-related protein-2, a dual specificity phosphatase (DSP).  相似文献   

7.
Recombination between repeated sequences at various loci of the human genome are known to give rise to DNA rearrangements associated with many genetic disorders. Perhaps the most extensively characterized genomic region prone to rearrangement is 17p12, which is associated with the peripheral neuropathies, hereditary neuropathy with liability to pressure palsies (HNPP) and Charcot-Marie-Tooth disease type 1A (CMT1A;ref. 2). Homologous recombination between 24-kb flanking repeats, termed CMT1A-REPs, results in a 1.5-Mb deletion that is associated with HNPP, and the reciprocal duplication product is associated with CMT1A (ref. 2). Smith-Magenis syndrome (SMS) is a multiple congenital anomalies, mental retardation syndrome associated with a chromosome 17 microdeletion, del(17)(p11.2p11.2) (ref. 3,4). Most patients (>90%) carry deletions of the same genetic markers and define a common deletion. We report seven unrelated patients with de novo duplications of the same region deleted in SMS. A unique junction fragment, of the same apparent size, was identified in each patient by pulsed field gel electrophoresis (PFGE). Further molecular analyses suggest that the de novo17p11.2 duplication is preferentially paternal in origin, arises from unequal crossing over due to homologous recombination between flanking repeat gene clusters and probably represents the reciprocal recombination product of the SMS deletion. The clinical phenotype resulting from duplication [dup(17)(p11.2p11.2)] is milder than that associated with deficiency of this genomic region. This mechanism of reciprocal deletion and duplication via homologous recombination may not only pertain to the 17p11.2 region, but may also be common to other regions of the genome where interstitial microdeletion syndromes have been defined.  相似文献   

8.
We have constructed a 3.1 megabase (Mb) physical map of chromosome 17p11.2-p12, which contains a submicroscopic duplication in patients with Charcot-Marie-Tooth disease type 1A (CMT1A). We find that the CMT1A duplication is a tandem repeat of 1.5 Mb of DNA. A YAC contig encompassing the CMT1A duplication and spanning the endpoints was also developed. Several low copy repeats in 17p11.2-p12 were identified including the large (> 17 kb) CMT1A-REP unit which may be part of a mosaic repeat. CMT1A-REP flanks the 1.5 Mb CMT1A monomer unit on normal chromosome 17 and is present in an additional copy on the CMT1A duplicated chromosome. We propose that the de novo CMT1A duplication arises from unequal crossing over due to misalignment at these CMT1A-REP repeat sequences during meiosis.  相似文献   

9.
We previously localized and fine-mapped Charcot Marie Tooth 4A (CMT4A), the autosomal recessive, demyelinating peripheral neuropathy, to chromosome 8. Through additional positional cloning, we have identified a good candidate gene, encoding ganglioside-induced differentiation-associated protein-1 (GDAP1). We found three different mutations in four different Tunisian families-two nonsense and one missense mutation. How mutations in GDAP1 lead to CMT4A remains to be understood.  相似文献   

10.
Charcot-Marie-Tooth disease (CMT) is the most common inherited neuromuscular disease and is characterized by considerable clinical and genetic heterogeneity. We previously reported a Russian family with autosomal dominant axonal CMT and assigned the locus underlying the disease (CMT2F; OMIM 606595) to chromosome 7q11-q21 (ref. 2). Here we report a missense mutation in the gene encoding 27-kDa small heat-shock protein B1 (HSPB1, also called HSP27) that segregates in the family with CMT2F. Screening for mutations in HSPB1 in 301 individuals with CMT and 115 individuals with distal hereditary motor neuropathies (distal HMNs) confirmed the previously observed mutation and identified four additional missense mutations. We observed the additional HSPB1 mutations in four families with distal HMN and in one individual with CMT neuropathy. Four mutations are located in the Hsp20-alpha-crystallin domain, and one mutation is in the C-terminal part of the HSP27 protein. Neuronal cells transfected with mutated HSPB1 were less viable than cells expressing the wild-type protein. Cotransfection of neurofilament light chain (NEFL) and mutant HSPB1 resulted in altered neurofilament assembly in cells devoid of cytoplasmic intermediate filaments.  相似文献   

11.
We identified three distinct mutations and six mutant alleles in GDAP1 in three families with axonal Charcot-Marie-Tooth (CMT) neuropathy and vocal cord paresis, which were previously linked to the CMT4A locus on chromosome 8q21.1. These results establish the molecular etiology of CMT4A (MIM 214400) and suggest that it may be associated with both axonal and demyelinating phenotypes.  相似文献   

12.
Charcot-Marie-Tooth (CMT) neuropathies are common disorders of the peripheral nervous system caused by demyelination or axonal degeneration, or a combination of both features. We previously assigned the locus for autosomal dominant intermediate CMT neuropathy type C (DI-CMTC) to chromosome 1p34-p35. Here we identify two heterozygous missense mutations (G41R and E196K) and one de novo deletion (153-156delVKQV) in tyrosyl-tRNA synthetase (YARS) in three unrelated families affected with DI-CMTC. Biochemical experiments and genetic complementation in yeast show partial loss of aminoacylation activity of the mutant proteins, and mutations in YARS, or in its yeast ortholog TYS1, reduce yeast growth. YARS localizes to axonal termini in differentiating primary motor neuron and neuroblastoma cultures. This specific distribution is significantly reduced in cells expressing mutant YARS proteins. YARS is the second aminoacyl-tRNA synthetase found to be involved in CMT, thereby linking protein-synthesizing complexes with neurodegeneration.  相似文献   

13.
Adult-onset autosomal dominant leukodystrophy (ADLD) is a slowly progressive neurological disorder characterized by symmetrical widespread myelin loss in the central nervous system, with a phenotype similar to chronic progressive multiple sclerosis. In this study, we identify a genomic duplication that causes ADLD. Affected individuals carry an extra copy of the gene for the nuclear laminar protein lamin B1, resulting in increased gene dosage in brain tissue from individuals with ADLD. Increased expression of lamin B1 in Drosophila melanogaster resulted in a degenerative phenotype. In addition, an abnormal nuclear morphology was apparent when cultured cells overexpressed this protein. This is the first human disease attributable to mutations in the gene encoding lamin B1. Antibodies to lamin B are found in individuals with autoimmune diseases, and it is also an antigen recognized by a monoclonal antibody raised against plaques from brains of individuals with multiple sclerosis. This raises the possibility that lamin B may be a link to the autoimmune attack that occurs in multiple sclerosis.  相似文献   

14.
Hereditary sensory neuropathy type 1 (HSN1, MIM 162400; ref. 1) genetically maps to human chromosome 9q22 (refs. 2-4). We report here that the gene encoding a subunit of serine palmitoyltransferase is located within the HSN1 locus, expressed in dorsal root ganglia (DRG) and mutated in HSN1.  相似文献   

15.
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of peripheral neuropathies. Different chromosomal loci have been linked with three autosomal dominant, 'intermediate' types of CMT: DI-CMTA, DI-CMTB and DI-CMTC. We refined the locus associated with DI-CMTB on chromosome 19p12-13.2 to 4.2 Mb in three unrelated families with CMT originating from Australia, Belgium and North America. After screening candidate genes, we identified unique mutations in dynamin 2 (DNM2) in all families. DNM2 belongs to the family of large GTPases and is part of the cellular fusion-fission apparatus. In transiently transfected cell lines, mutations of DNM2 substantially diminish binding of DNM2 to membranes by altering the conformation of the beta3/beta4 loop of the pleckstrin homology domain. Additionally, in the Australian and Belgian pedigrees, which carry two different mutations affecting the same amino acid, Lys558, CMT cosegregated with neutropenia, which has not previously been associated with CMT neuropathies.  相似文献   

16.
Tangier disease (TD) was first discovered nearly 40 years ago in two siblings living on Tangier Island. This autosomal co-dominant condition is characterized in the homozygous state by the absence of HDL-cholesterol (HDL-C) from plasma, hepatosplenomegaly, peripheral neuropathy and frequently premature coronary artery disease (CAD). In heterozygotes, HDL-C levels are about one-half those of normal individuals. Impaired cholesterol efflux from macrophages leads to the presence of foam cells throughout the body, which may explain the increased risk of coronary heart disease in some TD families. We report here refining of our previous linkage of the TD gene to a 1-cM region between markers D9S271 and D9S1866 on chromosome 9q31, in which we found the gene encoding human ATP cassette-binding transporter 1 (ABC1). We also found a change in ABC1 expression level on cholesterol loading of phorbol ester-treated THP1 macrophages, substantiating the role of ABC1 in cholesterol efflux. We cloned the full-length cDNA and sequenced the gene in two unrelated families with four TD homozygotes. In the first pedigree, a 1-bp deletion in exon 13, resulting in truncation of the predicted protein to approximately one-fourth of its normal size, co-segregated with the disease phenotype. An in-frame insertion-deletion in exon 12 was found in the second family. Our findings indicate that defects in ABC1, encoding a member of the ABC transporter superfamily, are the cause of TD.  相似文献   

17.
Triple-A syndrome (MIM 231550; also known as Allgrove syndrome) is an autosomal recessive disorder characterized by adrenocorticotropin hormone (ACTH)-resistant adrenal insufficiency, achalasia of the oesophageal cardia and alacrima. Whereas several lines of evidence indicate that triple-A syndrome results from the abnormal development of the autonomic nervous system, late-onset progressive neurological symptoms (including cerebellar ataxia, peripheral neuropathy and mild dementia) suggest that the central nervous system may be involved in the disease as well. Using fine-mapping based on linkage disequilibrium in North African inbred families, we identified a short ancestral haplotype on chromosome 12q13 (<1 cM), sequenced a BAC contig encompassing the triple-A minimal region and identified a novel gene (AAAS) encoding a protein of 547 amino acids that is mutant in affected individuals. We found five homozygous truncating mutations in unrelated patients and ascribed the founder effect in North African families to a single splice-donor site mutation that occurred more than 2,400 years ago. The predicted product of AAAS, ALADIN (for alacrima-achalasia-adrenal insufficiency neurologic disorder), belongs to the WD-repeat family of regulatory proteins, indicating a new disease mechanism involved in triple-A syndrome. The expression of the gene in both neuroendocrine and cerebral structures points to a role in the normal development of the peripheral and central nervous systems.  相似文献   

18.
Optic atrophy type 1 (OPA1, MIM 165500) is a dominantly inherited optic neuropathy occurring in 1 in 50,000 individuals that features progressive loss in visual acuity leading, in many cases, to legal blindness. Phenotypic variations and loss of retinal ganglion cells, as found in Leber hereditary optic neuropathy (LHON), have suggested possible mitochondrial impairment. The OPA1 gene has been localized to 3q28-q29 (refs 13-19). We describe here a nuclear gene, OPA1, that maps within the candidate region and encodes a dynamin-related protein localized to mitochondria. We found four different OPA1 mutations, including frameshift and missense mutations, to segregate with the disease, demonstrating a role for mitochondria in retinal ganglion cell pathophysiology.  相似文献   

19.
Disorganization of the neurofilament network is a prominent feature of several neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), infantile spinal muscular atrophy and axonal Charcot-Marie-Tooth disease. Giant axonal neuropathy (GAN, MIM 256850), a severe, autosomal recessive sensorimotor neuropathy affecting both the peripheral nerves and the central nervous system, is characterized by neurofilament accumulation, leading to segmental distension of the axons. GAN corresponds to a generalized disorganization of the cytoskeletal intermediate filaments (IFs), to which neurofilaments belong, as abnormal aggregation of multiple tissue-specific IFs has been reported: vimentin in endothelial cells, Schwann cells and cultured skin fibroblasts, and glial fibrillary acidic protein (GFAP) in astrocytes. Keratin IFs also seem to be alterated, as most patients present characteristic curly or kinky hairs. We report here identification of the gene GAN, which encodes a novel, ubiquitously expressed protein we have named gigaxonin. We found one frameshift, four nonsense and nine missense mutations in GAN of GAN patients. Gigaxonin is composed of an amino-terminal BTB (for Broad-Complex, Tramtrack and Bric a brac) domain followed by a six kelch repeats, which are predicted to adopt a beta-propeller shape. Distantly related proteins sharing a similar domain organization have various functions associated with the cytoskeleton, predicting that gigaxonin is a novel and distinct cytoskeletal protein that may represent a general pathological target for other neurodegenerative disorders with alterations in the neurofilament network.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号