首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Unusual helical packing in crystals of DNA bearing a mutation hot spot   总被引:10,自引:0,他引:10  
Y Timsit  E Westhof  R P Fuchs  D Moras 《Nature》1989,341(6241):459-462
The target sequence of the restriction enzyme NarI (GGCGCC) is a hot spot for the -2 frameshift mutagenesis (GGCGCC----GGCC) induced by the chemical carcinogens such as N-2-acetyl-aminofluorene. Of the guanine residues, all of which show equal reactivity towards the carcinogen, only binding to the 3'-most proximal guanine within the NarI site is able to trigger the frameshift event. We selected the non-palindromic dodecamer d(ACCGGCGCCACA), whose sequence corresponds to the most mutagenic NarI site in pBR322 DNA; for X-ray structure analysis. Its molecular structure determined at 2.8 A resolution reveals significant deviations from the structure of canonical B-form DNA, with partial opening of three G-C base pairs, high propeller twist values and sequence-dependent three-centred hydrogen bonds. This crystal structure shows a novel kind of packing in which helices are locked together by groove-backbone interactions. The partial opening of G-C base pairs is induced by interactions of phosphate anionic oxygen atoms with the amino group of cytosine bases. This provides a model for close approach of DNA molecules during biological processes, such as recombination.  相似文献   

2.
T J Matray  E T Kool 《Nature》1999,399(6737):704-708
In most models of DNA replication, Watson-Crick hydrogen bonding drives the incorporation of nucleotides into the new strand of DNA and maintains the complementarity of bases with the template strand. Studies with nonpolar analogues of thymine and adenine, however, have shown that replication is still efficient in the absence of hydrogen bonds. The replication of base pairs might also be influenced by steric exclusion, whereby inserted nucleotides need to be the correct size and shape to fit the active site against a template base. A simple steric-exclusion model may not require Watson-Crick hydrogen bonding to explain the fidelity of replication, nor should canonical purine and pyrimidine shapes be necessary for enzymatic synthesis of a base pair if each can fit into the DNA double helix without steric strain. Here we test this idea by using a pyrene nucleoside triphosphate (dPTP) in which the fluorescent 'base' is nearly as large as an entire Watson-Crick base pair. We show that the non-hydrogen-bonding dPTP is efficiently and specifically inserted by DNA polymerases opposite sites that lack DNA bases. The efficiency of this process approaches that of a natural base pair and the specificity is 10(2)-10(4)-fold. We use these properties to sequence abasic lesions in DNA, which are a common form of DNA damage in vivo. In addition to their application in identifying such genetic lesions, our results show that neither hydrogen bonds nor purine and pyrimidine structures are required to form a base pair with high efficiency and selectivity. These findings confirm that steric complementarity is an important factor in the fidelity of DNA synthesis.  相似文献   

3.
4.
Crespo-Hernández CE  Cohen B  Kohler B 《Nature》2005,436(7054):1141-1144
Solar ultraviolet light creates excited electronic states in DNA that can decay to mutagenic photoproducts. This vulnerability is compensated for in all organisms by enzymatic repair of photodamaged DNA. As repair is energetically costly, DNA is intrinsically photostable. Single bases eliminate electronic energy non-radiatively on a subpicosecond timescale, but base stacking and base pairing mediate the decay of excess electronic energy in the double helix in poorly understood ways. In the past, considerable attention has been paid to excited base pairs. Recent reports have suggested that light-triggered motion of a proton in one of the hydrogen bonds of an isolated base pair initiates non-radiative decay to the electronic ground state. Here we show that vertical base stacking, and not base pairing, determines the fate of excited singlet electronic states in single- and double-stranded oligonucleotides composed of adenine (A) and thymine (T) bases. Intrastrand excimer states with lifetimes of 50-150 ps are formed in high yields whenever A is stacked with itself or with T. Excimers limit excitation energy to one strand at a time in the B-form double helix, enabling repair using the undamaged strand as a template.  相似文献   

5.
DNA与抗癌药物道诺霉素相互作用的研究   总被引:3,自引:0,他引:3  
该文采用荧光光谱法并用溴化乙锭(EB)作为荧光探针研究了道诺霉素(DRN)与DNA相互作用的方式。结果表明:DRN的生色团能够嵌入dsDNA双螺旋结构的碱基对之间,DRN与DNA的主要作用位点是碱基G、C;DRN插入dsDNA碱其对中,不会破坏碱基对中氢键,不会影响DNA的复性;DNA与ssDNA仅仅存在弱的相互作用。  相似文献   

6.
Wang J 《Nature》2005,437(7057):E6-7; discussion E7
Human polymerase-iota belongs to the error-prone Y family of polymerases, which frequently incorporate incorrect nucleotides during DNA replication but can efficiently bypass DNA lesions. On the basis of X-ray diffraction data, Nair et al. propose that Hoogsteen base-pairing is adopted by DNA during its replication by this enzyme. Here I re-examine their X-ray data and find that the electron density is very weak for a Hoogsteen base pair formed between a template adenine deoxyribonucleotide in the syn conformation and a deoxythymidine 5'-triphosphate (dTTP), and that the fit is better for a normal Watson-Crick base pair. As a guanine-cytosine (G-C) base pair has no potential to form a Hoogsteen base pair at physiological pH, Hoogsteen base-pairing is unlikely to be used in replication by this polymerase.  相似文献   

7.
He Y  Ye T  Su M  Zhang C  Ribbe AE  Jiang W  Mao C 《Nature》2008,452(7184):198-201
DNA is renowned for its double helix structure and the base pairing that enables the recognition and highly selective binding of complementary DNA strands. These features, and the ability to create DNA strands with any desired sequence of bases, have led to the use of DNA rationally to design various nanostructures and even execute molecular computations. Of the wide range of self-assembled DNA nanostructures reported, most are one- or two-dimensional. Examples of three-dimensional DNA structures include cubes, truncated octahedra, octohedra and tetrahedra, which are all comprised of many different DNA strands with unique sequences. When aiming for large structures, the need to synthesize large numbers (hundreds) of unique DNA strands poses a challenging design problem. Here, we demonstrate a simple solution to this problem: the design of basic DNA building units in such a way that many copies of identical units assemble into larger three-dimensional structures. We test this hierarchical self-assembly concept with DNA molecules that form three-point-star motifs, or tiles. By controlling the flexibility and concentration of the tiles, the one-pot assembly yields tetrahedra, dodecahedra or buckyballs that are tens of nanometres in size and comprised of four, twenty or sixty individual tiles, respectively. We expect that our assembly strategy can be adapted to allow the fabrication of a range of relatively complex three-dimensional structures.  相似文献   

8.
Homopyrimidine oligonucleotides bind to homopurine-homopyrimidine sequences of duplex DNA forming a local triple helix. This binding can be demonstrated either directly by a footprinting technique, gel assays, or indirectly by inducing irreversible reactions in the target sequence, such as photocrosslinking or cleavage. Binding occurs in the major groove with the homopyrimidine oligonucleotide orientated parallel to the homopurine strand. Thymine and protonated cytosine in the oligonucleotide form Hoogsteen-type hydrogen bonds with A.T and G.C Watson-Crick base pairs, respectively. Here we report that an 11-residue homopyrimidine oligonucleotide covalently attached to an ellipticine derivative by its 3' phosphate photo-induces cleavage of the two strands of a target homopurine--homopyrimidine sequence. To our knowledge, this is the first reported case of a sequence-specific artificial photoendonuclease. In addition we show that a strong binding site for a free ellipticine derivative is induced at the junction between the triplex and duplex structures on the 5' side of the bound oligonucleotide. On irradiation, cleavage is observed on both strands of DNA. This opens new possibilities for inducing irreversible reactions on DNA at specific sites by the synergistic action of a triple helix-forming oligonucleotide and an intercalating agent.  相似文献   

9.
S R Holbrook  C Cheong  I Tinoco  S H Kim 《Nature》1991,353(6344):579-581
The crystal structure of the RNA dodecamer duplex (r-GGACUUCGGUCC)2 has been determined. The dodecamers stack end-to-end in the crystal, simulating infinite A-form helices with only a break in the phosphodiester chain. These infinite helices are held together in the crystal by hydrogen bonding between ribose hydroxyl groups and a variety of donors and acceptors. The four noncomplementary nucleotides in the middle of the sequence did not form an internal loop, but rather a highly regular double-helix incorporating the non-Watson-Crick base pairs, G.U and U.C. This is the first direct observation of a U.C (or T.C) base pair in a crystal structure. The U.C pairs each form only a single base-base hydrogen bond, but are stabilized by a water molecule which bridges between the ring nitrogens and by four waters in the major groove which link the bases and phosphates. The lack of distortion introduced in the double helix by the U.C mismatch may explain its low efficiency of repair in DNA. The G.U wobble pair is also stabilized by a minor-groove water which bridges between the unpaired guanine amino and the ribose hydroxyl of the uracil. This structure emphasizes the importance of specific hydrogen bonding between not only the nucleotide bases, but also the ribose hydroxyls, phosphate oxygens and tightly bound waters in stabilization of the intramolecular and intermolecular structures of double helical RNA.  相似文献   

10.
采用高水平量子化学方法,MP2/6-311G(d,p),对气相中的Mg2+/Ca2+与DNA碱基和水的相互作用进行了研究,优化base-M-(H2O)n(M=Mg2+/Ca2+,n=1~2)的几何结构,计算其结合能和电荷分布等性质.结果表明,Mg2+与配体碱基及水的距离要比Ca2+与其配体距离更近,Mg2+与其配体的平均距离要比Ca2+小0.03nm左右.Mg2+与其配体的结合能要比Ca2+的大60~70kcal/mol左右,随着水数目的增加,离子与配体的结合能力逐渐减弱,Mg2+/Ca2+到水和碱基的平均距离越来越大,但变化幅度较小.金属离子的电荷主要转移到水中.  相似文献   

11.
RNA bulges and the helical periodicity of double-stranded RNA   总被引:23,自引:0,他引:23  
A Bhattacharyya  A I Murchie  D M Lilley 《Nature》1990,343(6257):484-487
  相似文献   

12.
Berl V  Huc I  Khoury RG  Krische MJ  Lehn JM 《Nature》2000,407(6805):720-723
Synthetic single-helical conformations are quite common, but the formation of double helices based on recognition between the two constituent strands is relatively rare. Known examples include duplex formation through base-pair-specific hydrogen bonding and stacking, as found in nucleic acids and their analogues, and polypeptides composed of amino acids with alternating L and D configurations. Some synthetic polymers and self-assembled fibres have double-helical winding induced by van der Waals interactions. A third mode of non-covalent interaction, coordination of organic ligands to metal ions, can give rise to double, triple and quadruple helices, although in this case the assembly is driven by the coordination geometry of the metal and the structure of the ligands, rather than by direct inter-strand complementarity. Here we describe a family of oligomeric molecules with bent conformations, which exhibit dynamic exchange between single and double molecular helices in solution, through spiral sliding of the synthetic oligomer strands. The bent conformations leading to the helical shape of the molecules result from intramolecular hydrogen bonding within 2'-pyridyl-2-pyridinecarboxamide units, with extensive intermolecular aromatic stacking stabilizing the double-stranded helices that form through dimerization.  相似文献   

13.
Stano NM  Jeong YJ  Donmez I  Tummalapalli P  Levin MK  Patel SS 《Nature》2005,435(7040):370-373
Helicases are molecular motors that use the energy of nucleoside 5'-triphosphate (NTP) hydrolysis to translocate along a nucleic acid strand and catalyse reactions such as DNA unwinding. The ring-shaped helicase of bacteriophage T7 translocates along single-stranded (ss)DNA at a speed of 130 bases per second; however, T7 helicase slows down nearly tenfold when unwinding the strands of duplex DNA. Here, we report that T7 DNA polymerase, which is unable to catalyse strand displacement DNA synthesis by itself, can increase the unwinding rate to 114 base pairs per second, bringing the helicase up to similar speeds compared to its translocation along ssDNA. The helicase rate of stimulation depends upon the DNA synthesis rate and does not rely on specific interactions between T7 DNA polymerase and the carboxy-terminal residues of T7 helicase. Efficient duplex DNA synthesis is achieved only by the combined action of the helicase and polymerase. The strand displacement DNA synthesis by the DNA polymerase depends on the unwinding activity of the helicase, which provides ssDNA template. The rapid trapping of the ssDNA bases by the DNA synthesis activity of the polymerase in turn drives the helicase to move forward through duplex DNA at speeds similar to those observed along ssDNA.  相似文献   

14.
Nair DT  Johnson RE  Prakash S  Prakash L  Aggarwal AK 《Nature》2004,430(6997):377-380
Almost all DNA polymerases show a strong preference for incorporating the nucleotide that forms the correct Watson-Crick base pair with the template base. In addition, the catalytic efficiencies with which any given polymerase forms the four possible correct base pairs are roughly the same. Human DNA polymerase-iota (hPoliota), a member of the Y family of DNA polymerases, is an exception to these rules. hPoliota incorporates the correct nucleotide opposite a template adenine with a several hundred to several thousand fold greater efficiency than it incorporates the correct nucleotide opposite a template thymine, whereas its efficiency for correct nucleotide incorporation opposite a template guanine or cytosine is intermediate between these two extremes. Here we present the crystal structure of hPoliota bound to a template primer and an incoming nucleotide. The structure reveals a polymerase that is 'specialized' for Hoogsteen base-pairing, whereby the templating base is driven to the syn conformation. Hoogsteen base-pairing offers a basis for the varied efficiencies and fidelities of hPoliota opposite different template bases, and it provides an elegant mechanism for promoting replication through minor-groove purine adducts that interfere with replication.  相似文献   

15.
对随机产生的一系列512、51262和435663笼形水合簇,使用DFT/B97D/6-311++g (2d,2p)以及DFT/M052X/6-311++g (2d,2p)方法计算其能量,并讨论了这3种笼形水合簇中不同水分子对的分布与氢键的键能、笼形水合簇稳定性之间的关系。结果表明,对于3种笼形水合簇,若只考虑近邻水分子对中心水分子对的影响,则各笼形结构中只有4种氢键类型,只要确定其中1种氢键类型的个数,其他3种氢键类型的个数也可以被确定;3种笼形水合簇中氢键的平均能量和单个氢键的平均能量都随n(1221)值的增大而增加;但是在n(1221)值相同时,不同笼形水合簇中单个氢键的平均值几乎相同;当n(1221)值不同时,不同笼形水合簇的氢键网络能量出现重叠,说明笼形水合簇稳定性与4种氢键类型的分布值之间无严格对应关系。  相似文献   

16.
采用量子化学方法 B3LYP/6-311+G(d,p)对气相中的Li+/Be2+与4种DNA碱基和水的相互作用进行研究,优化Li+/Be2+与碱基及水形成的复合物的几何结构,计算其结合能和电荷分布等.结果表明,Be2+与配体碱基及水的距离要比与Li+的距离小0.3左右;Be2+与其配体的结合能要远比与Li+的配合能大.随着水数目的增加,Li+/Be2+到配位原子的平均距离越来越大,但变化幅度较小.在复合物中,金属离子的正电荷主要转移到水中.  相似文献   

17.
The three-dimensional crystal structure of the Escherichia coli methionine repressor, MetJ, complexed with a DNA operator fragment is described in an accompanying article. The complex exhibits several novel features of DNA-protein interaction. DNA sequence recognition is achieved largely by hydrogen-bond contacts between the bases and amino-acid side chains located on a beta-ribbon, a mode of recognition previously hypothesized on the basis of modelling of idealized beta-strands and DNA, and mutagenesis of the Salmonella phage P22 repressors Arc and Mnt. The complex comprises a pair of MetJ repressor dimers which bind to adjacent met-box sites on the DNA, and contact each other by means of a pair of antiparallel alpha-helices. Here we assess the importance of these contacts, and also of contacts that would be made between the C-helices of the protein and DNA in a previous model of the complex, by studying mutations aimed at disrupting them. The role of the carboxy-terminal helix face in operator binding was unclear, but we demonstrate that recognition of operator sequences occurs through side chains in the beta-strand motif and that dimer-dimer interactions are required for effective repression.  相似文献   

18.
The double helix of DNA epitomizes this molecule's ability to self-assemble in aqueous solutions into a complex chiral structure using hydrogen bonding and hydrophobic interactions. Non-covalently interacting molecules in organic solvents are used to design systems that similarly form controlled architectures. Peripheral chiral centres in assemblies and chiral side chains attached to a polymer backbone, have been shown to induce chirality at the supramolecular level, and highly ordered structures stable in water are also known. However, it remains difficult to rationally exploit non-covalent interactions for the formation of chiral assemblies that are stable in water, where solvent molecules can compete effectively for hydrogen bonds. Here we describe a general strategy for the design of functionalized monomer units and their association in either water or alkanes into non-covalently linked polymeric structures with controlled helicity and chain length. The monomers consist of bifunctionalized ureidotriazine units connected by a spacer and carrying solubilizing chains at the periphery. This design allows for dimerization through self-complementary quadruple hydrogen bonding between the units and solvophobically induced stacking of the dimers into columnar polymeric architectures, whose structure and helicity can be adjusted by tuning the nature of the solubilizing side chains.  相似文献   

19.
20.
Hashimoto H  Horton JR  Zhang X  Bostick M  Jacobsen SE  Cheng X 《Nature》2008,455(7214):826-829
Maintenance methylation of hemimethylated CpG dinucleotides at DNA replication forks is the key to faithful mitotic inheritance of genomic methylation patterns. UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is required for maintenance methylation by interacting with DNA nucleotide methyltransferase 1 (DNMT1), the maintenance methyltransferase, and with hemimethylated CpG, the substrate for DNMT1 (refs 1 and 2). Here we present the crystal structure of the SET and RING-associated (SRA) domain of mouse UHRF1 in complex with DNA containing a hemimethylated CpG site. The DNA is contacted in both the major and minor grooves by two loops that penetrate into the middle of the DNA helix. The 5-methylcytosine has flipped completely out of the DNA helix and is positioned in a binding pocket with planar stacking contacts, Watson-Crick polar hydrogen bonds and van der Waals interactions specific for 5-methylcytosine. Hence, UHRF1 contains a previously unknown DNA-binding module and is the first example of a non-enzymatic, sequence-specific DNA-binding protein domain to use the base flipping mechanism to interact with DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号