首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Tercero JA  Diffley JF 《Nature》2001,412(6846):553-557
The checkpoint kinase proteins Mec1 and Rad53 are required in the budding yeast, Saccharomyces cerevisiae, to maintain cell viability in the presence of drugs causing damage to DNA or arrest of DNA replication forks. It is thought that they act by inhibiting cell cycle progression, allowing time for DNA repair to take place. Mec1 and Rad53 also slow S phase progression in response to DNA alkylation, although the mechanism for this and its relative importance in protecting cells from DNA damage have not been determined. Here we show that the DNA-alkylating agent methyl methanesulphonate (MMS) profoundly reduces the rate of DNA replication fork progression; however, this moderation does not require Rad53 or Mec1. The accelerated S phase in checkpoint mutants, therefore, is primarily a consequence of inappropriate initiation events. Wild-type cells ultimately complete DNA replication in the presence of MMS. In contrast, replication forks in checkpoint mutants collapse irreversibly at high rates. Moreover, the cytotoxicity of MMS in checkpoint mutants occurs specifically when cells are allowed to enter S phase with DNA damage. Thus, preventing damage-induced DNA replication fork catastrophe seems to be a primary mechanism by which checkpoints preserve viability in the face of DNA alkylation.  相似文献   

2.
Zhao S  Weng YC  Yuan SS  Lin YT  Hsu HC  Lin SC  Gerbino E  Song MH  Zdzienicka MZ  Gatti RA  Shay JW  Ziv Y  Shiloh Y  Lee EY 《Nature》2000,405(6785):473-477
Ataxia-telangiectasia (A-T) and Nijmegen breakage syndrome (NBS) are recessive genetic disorders with susceptibility to cancer and similar cellular phenotypes. The protein product of the gene responsible for A-T, designated ATM, is a member of a family of kinases characterized by a carboxy-terminal phosphatidylinositol 3-kinase-like domain. The NBS1 protein is specifically mutated in patients with Nijmegen breakage syndrome and forms a complex with the DNA repair proteins Rad50 and Mrel1. Here we show that phosphorylation of NBS1, induced by ionizing radiation, requires catalytically active ATM. Complexes containing ATM and NBS1 exist in vivo in both untreated cells and cells treated with ionizing radiation. We have identified two residues of NBS1, Ser 278 and Ser 343 that are phosphorylated in vitro by ATM and whose modification in vivo is essential for the cellular response to DNA damage. This response includes S-phase checkpoint activation, formation of the NBS1/Mrel1/Rad50 nuclear foci and rescue of hypersensitivity to ionizing radiation. Together, these results demonstrate a biochemical link between cell-cycle checkpoints activated by DNA damage and DNA repair in two genetic diseases with overlapping phenotypes.  相似文献   

3.
The DNA replication checkpoint response stabilizes stalled replication forks   总被引:62,自引:0,他引:62  
In response to DNA damage and blocks to replication, eukaryotes activate the checkpoint pathways that prevent genomic instability and cancer by coordinating cell cycle progression with DNA repair. In budding yeast, the checkpoint response requires the Mec1-dependent activation of the Rad53 protein kinase. Active Rad53 slows DNA synthesis when DNA is damaged and prevents firing of late origins of replication. Further, rad53 mutants are unable to recover from a replication block. Mec1 and Rad53 also modulate the phosphorylation state of different DNA replication and repair enzymes. Little is known of the mechanisms by which checkpoint pathways interact with the replication apparatus when DNA is damaged or replication blocked. We used the two-dimensional gel technique to examine replication intermediates in response to hydroxyurea-induced replication blocks. Here we show that hydroxyurea-treated rad53 mutants accumulate unusual DNA structures at replication forks. The persistence of these abnormal molecules during recovery from the hydroxyurea block correlates with the inability to dephosphorylate Rad53. Further, Rad53 is required to properly maintain stable replication forks during the block. We propose that Rad53 prevents collapse of the fork when replication pauses.  相似文献   

4.
Genotoxic stress triggers the activation of checkpoints that delay cell-cycle progression to allow for DNA repair. Studies in fission yeast implicate members of the Rad family of checkpoint proteins, which includes Rad17, Rad1, Rad9 and Hus1, as key early-response elements during the activation of both the DNA damage and replication checkpoints. Here we demonstrate a direct regulatory linkage between the human Rad17 homologue (hRad17) and the checkpoint kinases, ATM and ATR. Treatment of human cells with genotoxic agents induced ATM/ATR-dependent phosphorylation of hRad17 at Ser 635 and Ser 645. Overexpression of a hRad17 mutant (hRad17AA) bearing Ala substitutions at both phosphorylation sites abrogated the DNA-damage-induced G2 checkpoint, and sensitized human fibroblasts to genotoxic stress. In contrast to wild-type hRad17, the hRad17AA mutant showed no ionizing-radiation-inducible association with hRad1, a component of the hRad1-hRad9-hHus1 checkpoint complex. These findings demonstrate that ATR/ATM-dependent phosphorylation of hRad17 is a critical early event during checkpoint signalling in DNA-damaged cells.  相似文献   

5.
A single double-strand break (DSB) induced by HO endonuclease triggers both repair by homologous recombination and activation of the Mec1-dependent DNA damage checkpoint in budding yeast. Here we report that DNA damage checkpoint activation by a DSB requires the cyclin-dependent kinase CDK1 (Cdc28) in budding yeast. CDK1 is also required for DSB-induced homologous recombination at any cell cycle stage. Inhibition of homologous recombination by using an analogue-sensitive CDK1 protein results in a compensatory increase in non-homologous end joining. CDK1 is required for efficient 5' to 3' resection of DSB ends and for the recruitment of both the single-stranded DNA-binding complex, RPA, and the Rad51 recombination protein. In contrast, Mre11 protein, part of the MRX complex, accumulates at unresected DSB ends. CDK1 is not required when the DNA damage checkpoint is initiated by lesions that are processed by nucleotide excision repair. Maintenance of the DSB-induced checkpoint requires continuing CDK1 activity that ensures continuing end resection. CDK1 is also important for a later step in homologous recombination, after strand invasion and before the initiation of new DNA synthesis.  相似文献   

6.
The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta.   总被引:28,自引:0,他引:28  
C Masutani  R Kusumoto  A Yamada  N Dohmae  M Yokoi  M Yuasa  M Araki  S Iwai  K Takio  F Hanaoka 《Nature》1999,399(6737):700-704
Xeroderma pigmentosum variant (XP-V) is an inherited disorder which is associated with increased incidence of sunlight-induced skin cancers. Unlike other xeroderma pigmentosum cells (belonging to groups XP-A to XP-G), XP-V cells carry out normal nucleotide-excision repair processes but are defective in their replication of ultraviolet-damaged DNA. It has been suspected for some time that the XPV gene encodes a protein that is involved in trans-lesion DNA synthesis, but the gene product has never been isolated. Using an improved cell-free assay for trans-lesion DNA synthesis, we have recently isolated a DNA polymerase from HeLa cells that continues replication on damaged DNA by bypassing ultraviolet-induced thymine dimers in XP-V cell extracts. Here we show that this polymerase is a human homologue of the yeast Rad30 protein, recently identified as DNA polymerase eta. This polymerase and yeast Rad30 are members of a family of damage-bypass replication proteins which comprises the Escherichia coli proteins UmuC and DinB and the yeast Rev1 protein. We found that all XP-V cells examined carry mutations in their DNA polymerase eta gene. Recombinant human DNA polymerase eta corrects the inability of XP-V cell extracts to carry out DNA replication by bypassing thymine dimers on damaged DNA. Together, these results indicate that DNA polymerase eta could be the XPV gene product.  相似文献   

7.
Nagao K  Adachi Y  Yanagida M 《Nature》2004,430(7003):1044-1048
Sister chromatids are held together by cohesins. At anaphase, separase is activated by degradation of its inhibitory partner, securin. Separase then cleaves cohesins, thus allowing sister chromatid separation. Fission yeast securin (Cut2) has destruction boxes and a separase (Cut1) interaction site in the amino and carboxyl terminus, respectively. Here we show that securin is essential for separase stability and also for proper repair of DNA damaged by ultraviolet, X-ray and gamma-ray irradiation. The cut2(EA2) mutant is defective in the repair of ultraviolet damage lesions, although the DNA damage checkpoint is activated normally. In double mutant analysis of ultraviolet sensitivity, checkpoint kinase chk1 (ref. 9) and excision repair rad13 (ref. 10) mutants were additive with cut2(EA2), whereas recombination repair rhp51 (ref. 11) and cohesin subunit rad21 (ref. 12) mutants were not. Cohesin was hyper-modified on ultraviolet irradiation in a Rad3 kinase-dependent way. Experiments using either mutant cohesin that cannot be cleaved by separase or a protease-dead separase provide evidence that this DNA repair function of securin-separase acts through the cleavage of cohesin. We propose that the securin-separase complex might aid DNA repair by removing local cohesin in interphase cells.  相似文献   

8.
Binding of double-strand breaks in DNA by human Rad52 protein   总被引:23,自引:0,他引:23  
Van Dyck E  Stasiak AZ  Stasiak A  West SC 《Nature》1999,398(6729):728-731
Double-strand breaks (DSBs) in DNA are caused by ionizing radiation. These chromosomal breaks can kill the cell unless repaired efficiently, and inefficient or inappropriate repair can lead to mutation, gene translocation and cancer. Two proteins that participate in the repair of DSBs are Rad52 and Ku: in lower eukaryotes such as yeast, DSBs are repaired by Rad52-dependent homologous recombination, whereas vertebrates repair DSBs primarily by Ku-dependent non-homologous end-joining. The contribution of homologous recombination to vertebrate DSB repair, however, is important. Biochemical studies indicate that Ku binds to DNA ends and facilitates end-joining. Here we show that human Rad52, like Ku, binds directly to DSBs, protects them from exonuclease attack and facilitates end-to-end interactions. A model for repair is proposed in which either Ku or Rad52 binds the DSB. Ku directs DSBs into the non-homologous end-joining repair pathway, whereas Rad52 initiates repair by homologous recombination. Ku and Rad52, therefore, direct entry into alternative pathways for the repair of DNA breaks.  相似文献   

9.
Min JH  Pavletich NP 《Nature》2007,449(7162):570-575
Mutations in the nucleotide excision repair (NER) pathway can cause the xeroderma pigmentosum skin cancer predisposition syndrome. NER lesions are limited to one DNA strand, but otherwise they are chemically and structurally diverse, being caused by a wide variety of genotoxic chemicals and ultraviolet radiation. The xeroderma pigmentosum C (XPC) protein has a central role in initiating global-genome NER by recognizing the lesion and recruiting downstream factors. Here we present the crystal structure of the yeast XPC orthologue Rad4 bound to DNA containing a cyclobutane pyrimidine dimer (CPD) lesion. The structure shows that Rad4 inserts a beta-hairpin through the DNA duplex, causing the two damaged base pairs to flip out of the double helix. The expelled nucleotides of the undamaged strand are recognized by Rad4, whereas the two CPD-linked nucleotides become disordered. These findings indicate that the lesions recognized by Rad4/XPC thermodynamically destabilize the Watson-Crick double helix in a manner that facilitates the flipping-out of two base pairs.  相似文献   

10.
R D Johnson  N Liu  M Jasin 《Nature》1999,401(6751):397-399
The repair of DNA double-strand breaks is essential for cells to maintain their genomic integrity. Two major mechanisms are responsible for repairing these breaks in mammalian cells, non-homologous end-joining (NHEJ) and homologous recombination (HR): the importance of the former in mammalian cells is well established, whereas the role of the latter is just emerging. Homologous recombination is presumably promoted by an evolutionarily conserved group of genes termed the Rad52 epistasis group. An essential component of the HR pathway is the strand-exchange protein, known as RecA in bacteria or Rad51 in yeast. Several mammalian genes have been implicated in repair by homologous recombination on the basis of their sequence homology to yeast Rad51: one of these is human XRCC2. Here we show that XRCC2 is essential for the efficient repair of DNA double-strand breaks by homologous recombination between sister chromatids. We find that hamster cells deficient in XRCC2 show more than a 100-fold decrease in HR induced by double-strand breaks compared with the parental cell line. This defect is corrected to almost wild-type levels by transient transfection with a plasmid expressing XRCC2. The repair defect in XRCC2 mutant cells appears to be restricted to recombinational repair because NHEJ is normal. We conclude that XRCC2 is involved in the repair of DNA double-strand breaks by homologous recombination.  相似文献   

11.
Double-strand breaks occur during DNA replication and are also induced by ionizing radiation. There are at least two pathways which can repair such breaks: non-homologous end joining and homologous recombination (HR). Although these pathways are essentially independent of one another, it is possible that the proteins Mre11, Rad50 and Xrs2 are involved in both pathways in Saccharomyces cerevisiae. In vertebrate cells, little is known about the exact function of the Mre11-Rad50-Nbs1 complex in the repair of double-strand breaks because Mre11- and Rad50-null mutations are lethal. Here we show that Nbs1 is essential for HR-mediated repair in higher vertebrate cells. The disruption of Nbs1 reduces gene conversion and sister chromatid exchanges, similar to other HR-deficient mutants. In fact, a site-specific double-strand break repair assay showed a notable reduction of HR events following generation of such breaks in Nbs1-disrupted cells. The rare recombinants observed in the Nbs1-disrupted cells were frequently found to have aberrant structures, which possibly arise from unusual crossover events, suggesting that the Nbs1 complex might be required to process recombination intermediates.  相似文献   

12.
Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing   总被引:2,自引:0,他引:2  
Mimitou EP  Symington LS 《Nature》2008,455(7214):770-774
DNA ends exposed after introduction of double-strand breaks (DSBs) undergo 5'-3' nucleolytic degradation to generate single-stranded DNA, the substrate for binding by the Rad51 protein to initiate homologous recombination. This process is poorly understood in eukaryotes, but several factors have been implicated, including the Mre11 complex (Mre11-Rad50-Xrs2/NBS1), Sae2/CtIP/Ctp1 and Exo1. Here we demonstrate that yeast Exo1 nuclease and Sgs1 helicase function in alternative pathways for DSB processing. Novel, partially resected intermediates accumulate in a double mutant lacking Exo1 and Sgs1, which are poor substrates for homologous recombination. The early processing step that generates partly resected intermediates is dependent on Sae2. When Sae2 is absent, in addition to Exo1 and Sgs1, unprocessed DSBs accumulate and homology-dependent repair fails. These results suggest a two-step mechanism for DSB processing during homologous recombination. First, the Mre11 complex and Sae2 remove a small oligonucleotide(s) from the DNA ends to form an early intermediate. Second, Exo1 and/or Sgs1 rapidly process this intermediate to generate extensive tracts of single-stranded DNA that serve as substrate for Rad51.  相似文献   

13.
Denchi EL  de Lange T 《Nature》2007,448(7157):1068-1071
When telomeres are rendered dysfunctional through replicative attrition of the telomeric DNA or by inhibition of shelterin, cells show the hallmarks of ataxia telangiectasia mutated (ATM) kinase signalling. In addition, dysfunctional telomeres might induce an ATM-independent pathway, such as ataxia telangiectasia and Rad3-related (ATR) kinase signalling, as indicated by the phosphorylation of the ATR target CHK1 in senescent cells and the response of ATM-deficient cells to telomere dysfunction. However, because telomere attrition is accompanied by secondary DNA damage, it has remained unclear whether there is an ATM-independent pathway for the detection of damaged telomeres. Here we show that damaged mammalian telomeres can activate both ATM and ATR and address the mechanism by which the shelterin complex represses these two important DNA damage signalling pathways. We analysed the telomere damage response on depletion of either or both of the shelterin proteins telomeric repeat binding factor 2 (TRF2) and protection of telomeres 1 (POT1) from cells lacking ATM and/or ATR kinase signalling. The data indicate that TRF2 and POT1 act independently to repress these two DNA damage response pathways. TRF2 represses ATM, whereas POT1 prevents activation of ATR. Unexpectedly, we found that either ATM or ATR signalling is required for efficient non-homologous end-joining of dysfunctional telomeres. The results reveal how mammalian telomeres use multiple mechanisms to avoid DNA damage surveillance and provide an explanation for the induction of replicative senescence and genome instability by shortened telomeres.  相似文献   

14.
To study the function of CaPptl, we deleted PPT1 gene from the Candida albicans genome by sequentially replacing the entire coding region with the selectable markers ARG4 and HIS1. The results showed that the deletion of Pptl did not affect the hyphal formation of C. albicans under serum induction and caused enhanced sensitivity to DNA damage, Calcofluor white and salt- induced stress. We also found that Pptl was not required for the phenotypic response of cells treated with the genotoxins, methylmethane sulfonate and hydroxyurea. Flow cytometric analyses indicated that pptlA cells and wild-type cells showed similar G2/M arrest profiles when exposed to DNA damage stress. Pptl was not required for the activation of the DNA damage response pathway, as indicated by normal phosphorylation of Rad53 and Rfa2 in pptlA cells under DNA damage stress. We suggest that Pptl plays important roles in response to various stress conditions in C. albicans.  相似文献   

15.
Tsukuda T  Fleming AB  Nickoloff JA  Osley MA 《Nature》2005,438(7066):379-383
The repair of DNA double-strand breaks (DSBs) is crucial for maintaining genome stability. Eukaryotic cells repair DSBs by both non-homologous end joining and homologous recombination. How chromatin structure is altered in response to DSBs and how such alterations influence DSB repair processes are important issues. In vertebrates, phosphorylation of the histone variant H2A.X occurs rapidly after DSB formation, spreads over megabase chromatin domains, and is required for stable accumulation of repair proteins at damage foci. In Saccharomyces cerevisiae, phosphorylation of the two principal H2A species is also signalled by DSB formation, which spreads approximately 40 kb in either direction from the DSB. Here we show that near a DSB phosphorylation of H2A is followed by loss of histones H2B and H3 and increased sensitivity of chromatin to digestion by micrococcal nuclease; however, phosphorylation of H2A and nucleosome loss occur independently. The DNA damage sensor MRX is required for histone loss, which also depends on INO80, a nucleosome remodelling complex. The repair protein Rad51 (ref. 6) shows delayed recruitment to DSBs in the absence of histone loss, suggesting that MRX-dependent nucleosome remodelling regulates the accessibility of factors directly involved in DNA repair by homologous recombination. Thus, MRX may regulate two pathways of chromatin changes: nucleosome displacement for efficient recruitment of homologous recombination proteins; and phosphorylation of H2A, which modulates checkpoint responses to DNA damage.  相似文献   

16.
Expression of the E. coli uvrA gene is inducible   总被引:40,自引:0,他引:40  
C J Kenyon  G C Walker 《Nature》1981,289(5800):808-810
UvrA+-dependent excision repair is one of the most important systems in Escherichia coli for repairing UV-induced pyrimidine dimers and a variety of other forms of DNA damage. The uvrA protein acts in conjunction with the uvrB and uvrC gene products to introduce a nick at the of a DNA lesion and thus initiate the repair process. We have recently used the Mud(Ap, lac) operon fusion vector to identify a set of genes whose expression is induced by DNA damage. One Mud(Ap, lac) insertion mapped at the uvrA locus and made the cells sensitive to UV light. In this fusion strain, beta-galactosidase expression was induced by DNA-damaging agents in a recA+lexA+-dependent fashion. We were surprised by this result because uvrA+-dependent excision repair is observed both in cells in which protein synthesis has been inhibited and in recA- and lexA- cells, findings which have led to the conclusion that the uvrA gene product is constitutively expressed and not under the control of the complex recA+lexA+ regulatory circuitry (see below). We have investigated this possibility further and describe here the generation and characterization of a set of fusions of the lac genes to the promoter of the uvrA gene. We confirm that the uvrA gene product is induced by DNA damage in a recA+lexA+-dependent fashion.  相似文献   

17.
Bugreev DV  Mazina OM  Mazin AV 《Nature》2006,442(7102):590-593
Homologous recombination has a crucial function in the repair of DNA double-strand breaks and in faithful chromosome segregation. The mechanism of homologous recombination involves the search for homology and invasion of the ends of a broken DNA molecule into homologous duplex DNA to form a cross-stranded structure, a Holliday junction (HJ). A HJ is able to undergo branch migration along DNA, generating increasing or decreasing lengths of heteroduplex. In both prokaryotes and eukaryotes, the physical evidence for HJs, the key intermediate in homologous recombination, was provided by electron microscopy. In bacteria there are specialized enzymes that promote branch migration of HJs. However, in eukaryotes the identity of homologous recombination branch-migration protein(s) has remained elusive. Here we show that Rad54, a Swi2/Snf2 protein, binds HJ-like structures with high specificity and promotes their bidirectional branch migration in an ATPase-dependent manner. The activity seemed to be conserved in human and yeast Rad54 orthologues. In vitro, Rad54 has been shown to stimulate DNA pairing of Rad51, a key homologous recombination protein. However, genetic data indicate that Rad54 protein might also act at later stages of homologous recombination, after Rad51 (ref. 13). Novel DNA branch-migration activity is fully consistent with this late homologous recombination function of Rad54 protein.  相似文献   

18.
Gasser S  Orsulic S  Brown EJ  Raulet DH 《Nature》2005,436(7054):1186-1190
Some stimulatory receptors of the innate immune system, such as the NKG2D receptor (also called KLRK1) expressed by natural killer cells and activated CD8(+)T cells, recognize self-molecules that are upregulated in diseased cells by poorly understood mechanisms. Here we show that mouse and human NKG2D ligands are upregulated in non-tumour cell lines by genotoxic stress and stalled DNA replication, conditions known to activate a major DNA damage checkpoint pathway initiated by ATM (ataxia telangiectasia, mutated) or ATR (ATM- and Rad3-related) protein kinases. Ligand upregulation was prevented by pharmacological or genetic inhibition of ATR, ATM or Chk1 (a downstream transducer kinase in the pathway). Furthermore, constitutive ligand expression by a tumour cell line was inhibited by targeting short interfering RNA to ATM, suggesting that ligand expression in established tumour cells, which often harbour genomic irregularities, may be due to chronic activation of the DNA damage response pathway. Thus, the DNA damage response, previously shown to arrest the cell cycle and enhance DNA repair functions, or to trigger apoptosis, may also participate in alerting the immune system to the presence of potentially dangerous cells.  相似文献   

19.
Lydeard JR  Jain S  Yamaguchi M  Haber JE 《Nature》2007,448(7155):820-823
Break-induced replication (BIR) is an efficient homologous recombination process to initiate DNA replication when only one end of a chromosome double-strand break shares homology with a template. BIR is thought to re-establish replication at stalled and broken replication forks and to act at eroding telomeres in cells that lack telomerase in pathways known as 'alternative lengthening of telomeres' (reviewed in refs 2, 6). Here we show that, in haploid budding yeast, Rad51-dependent BIR induced by HO endonuclease requires the lagging strand DNA Polalpha-primase complex as well as Poldelta to initiate new DNA synthesis. Polepsilon is not required for the initial primer extension step of BIR but is required to complete 30 kb of new DNA synthesis. Initiation of BIR also requires the nonessential DNA Poldelta subunit Pol32 primarily through its interaction with another Poldelta subunit, Pol31. HO-induced gene conversion, in which both ends of a double-strand break engage in homologous recombination, does not require Pol32. Pol32 is also required for the recovery of both Rad51-dependent and Rad51-independent survivors in yeast strains lacking telomerase. These results strongly suggest that both types of telomere maintenance pathways occur by recombination-dependent DNA replication. Thus Pol32, dispensable for replication and for gene conversion, is uniquely required for BIR; this finding provides an opening into understanding how DNA replication re-start mechanisms operate in eukaryotes. We also note that Pol32 homologues have been identified both in fission yeast and in metazoans where telomerase-independent survivors with alternative telomere maintenance have also been identified.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号