首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
提出了一种求解高阶微分方程数值解的第3类Chebyshev小波方法.通过利用位移第3类Chebyshev多项式,在Riemann-liouville分数阶定义下,借助Laplace变换推导了第3类Chebyshev小波函数分数阶积分的精确表达式,给出了小波函数逼近的误差估计.利用小波配置法,将高阶微分方程的求解问题转化为代数方程组进行求解.数值算例表明了该算法的适用性与有效性.  相似文献   

2.
基于三尺度第3类Chebyshev小波,提出了一类非线性分数阶微分方程数值解的一个小波配点法。首先,构造了三尺度第3类Chebyshev小波函数,证明了该小波函数的标准正交性,并给出了小波函数展开的L2范数意义下的一致收敛性分析和误差估计。其次,基于平移第3类Chebyshev多项式,借助Laplace变换推导出了三尺度第3类Chebyshev小波函数在Riemann-Liouville分数阶意义下的积分公式。最后,结合Picard迭代,利用三尺度第3类Chebyshev小波配点法,将非线性分数阶微分方程的初值问题及边值问题离散为代数方程组求解。数值算例说明了该方法的有效性和高精度性。  相似文献   

3.
为了求解一类非线性分数阶微分方程,基于二维三尺度第3类Chebyshev小波,提出了的一个数值解法。首先,构造了标准正交的三尺度第3类Chebyshev小波,通过叉乘,得到了标准正交的二维三尺度第3类Chebyshev小波。其次,基于平移的第3类Chebyshev多项式,借助Laplace变换,推导出了三尺度第3类Chebyshev小波的Riemann-Liouville分数阶积分公式,并给出了二维三尺度第3类Chebyshev小波展开在L2范数意义下的一致收敛性分析和误差估计。最后,利用小波积分公式,结合Picard迭代和有效的配置法,将非线性分数阶微分方程离散为代数方程组问题求解。数值算例说明了该方法的有效性和高精度性。  相似文献   

4.
通过对第五类Chebyshev多项式进行伸缩平移,构造了第五类Chebyshev小波。利用BlockPulse函数近似第五类Chebyshev小波求得其分数阶积分算子。由第五类Chebyshev多项式的性质证明了该小波级数的收敛性,并给出小波逼近函数的截断误差估计。此外,将第五类Chebyshev小波应用于分数阶微分方程的求解,通过数值算例,验证了该方法的有效性。  相似文献   

5.
推导第二类Chebyshev小波(SCW)分数阶算子矩阵,利用SCW算子矩阵方法求解了一类非线性分数阶Volterra积分-微分方程.此方法将分数阶积分-微分方程转化成非线性代数方程组求解,可以简化分数阶方程的求解,所得到的数值结果表明该方法是有效和精确的.  相似文献   

6.
建立了求解梁振动方程数值解的移位Legendre小波配置法。利用移位的Legendre多项式,推导出Riemann-Liouville意义下移位Legendre小波函数的一般分数阶积分公式。利用分数积分公式和二维移位Legendre小波配置法,将梁振动方程求解问题转化为代数方程组求解。数值算例表明该方法具有较高的精度。  相似文献   

7.
利用有理Haar小波函数数值求解分数阶第2类Fredholm积分方程,用有理Haar小波定义及性质与配置法给出有理Haar小波积分算子矩阵,将积分方程转化为代数方程组进行求解.最后通过误差分析和数值算例将分数阶积分方程的精确解和用Haar小波所得数值解进行比较,表明了该算法具有较高的精确度.  相似文献   

8.
利用B样条小波函数数值求解非线性分数阶第2类Fredholm积分方程,将具有紧支集的线性半正交B样条尺度函数和小波函数一起应用于数值求解非线性分数阶第2类Fredholm积分方程中.这种方法将非线性分数阶Fredholm积分方程转化为非线性代数方程组,再通过数值求解方程组得到原方程的数值解, 证明了误差边界值,数值算例验证了本方法的有效性和准确性.  相似文献   

9.
推导并利用第二类Chebyshev小波的分数阶积分算子矩阵,给出了求解一类分数阶偏方程的数值方法,并证明了二元函数第二类Chebyshev小波展式的收敛性。研究结果表明,基于第二类Chebyshev小波算子矩阵的方法可将分数阶阶偏微分方程转化成Sylvester方程求解,减少方程的计算量。数值算例表明,随着参数m’的增大,数值解与精确解可以很好地吻合,证明了基于第二类Chebyshev小波算子矩阵方法数值求解分数阶偏微分方程的有效性和精确性。  相似文献   

10.
用Jacobi谱配置方法, 数值求解一类非线性时间分数阶导数为Caputo导数的Klein-Gordon方程. 先用Caputo分数阶导数和Riemann-Liouville分数阶积分的关系, 将分数阶Klein-Gordon方程转化为在时间上带奇异核的积分微分方程, 再在时间和空间上采用Jacobi谱配置法, 并用高斯积分公式逼近积分项, 使方程在配置点上 成立, 从而求得其数值解. 数值算例结果表明, 该方法所得数值解很好地逼近了精确解.  相似文献   

11.
利用Haar小波求解分数阶第一类Volterra积分方程,主要采用配置法将积分方程转化为线性方程组.证明了解的存在性,并且给出了数值解的误差估计,数值算例表明了算法的有效性.  相似文献   

12.
为了求解数值积分,利用第2类Chebyshev小波函数构造了一些求解定积分的数值积分公式。该算法的主要思想是将被积函数利用小波基函数的线性组合来进行表达,通过离散化被积分函数得到相应的Chebyshev小波矩阵,再通过小波基函数在[0,1]区间上的积分得到了求积系数。通过第2类Chebyshev多项式的解析表达式,推导了Chebyshev小波基函数的一般积分公式,从而为该小波的应用提供了方便。通过大量数值实例验证了该方法的可行性及有效性。该算法编程简单,应用方便,也适用于奇异积分、震荡函数积分问题。  相似文献   

13.
为了求解非线性分数阶Fredholm积分微分方程的数值解,通过Legendre多项式,得出了Legendre小波,并由block pulse函数给出了Legendre小波的分数阶积分算子矩阵,利用block pulse函数与Legendre小波的积分算子矩阵的性质将非线性分数阶Fredholm积分微分方程转化为非线性代数方程组,进而可以求得原积分微分方程的数值解.结果表明:随着点数的增多,数值解的精度也越来越高.文中给出的算例表明了该方法的可行性和有效性.  相似文献   

14.
研究了求解非线性分数阶微分方程的hp 型Legendre 谱配置法。首先提出将多分数阶微分方程转化成等价的Volterra 积分方程, 其次构造了近似求解原方程的数值方法, 最后通过数值实验说明了该算法的理论正确性以及所构造数值方法的有效性。  相似文献   

15.
为利用Legendre小波求分数阶Bratu型积分微分方程数值解,结合Legendre小波定义及其性质,给出Legendre小波分数阶积分算子矩阵.利用所得算子矩阵,将原问题转化为求解非线性代数方程组,进而可以计算机编程求解,从而大大简化计算量.唯一性定理指出所求分数阶Bratu型积分微分方程的解唯一.结果表明:随着点数的增多,数值解精度也越来越高.数值算例验证了算法的有效性和可行性.  相似文献   

16.
为了求分数阶变系数带弱奇异积分核的Volterra-Fredholm积分微分方程数值解,提出了Legendre小波配点法.利用平移的Legendre多项式解析形式,推导了定义在[0,1]区间上Legendre小波函数的任意阶积分求积公式.利用高斯求积公式来近似定积分项和Legendre小波函数的任意阶积分公式,将原积分微分方程转化为求代数方程组的解.数值算例验证了该方法的有效性.  相似文献   

17.
整数阶常微分方程的数值解法已有比较完善的理论,而时于分数阶微分方程数值方法的理论研究相对较少.由此考虑用Legendre小波逼近求线性分数阶微分方程数值解.首先描述了分数阶导敷、积分和I~enare小波的性质,然后利用这些性质把分数阶微分方程转化为Volterra积分方程.考虑采用Legendre小波求数值解的线性分数阶微分方程:Day(x)+λy(x)=f(x),0相似文献   

18.
采用半正交B样条小波方法将第二类线性分数阶Fredholm积分方程的核函数、已知函数和未知函数展开,给出收敛性定理及误差分析;结合选取的等距配置点将积分方程转化为线性代数方程组进行求解;通过数值算例验证了方法的有效性.  相似文献   

19.
考虑一类分数阶微分方程终值问题的混合配置法. 先基于打靶法, 把分数阶微分方程终值问题转化为初值问题; 再应用分数阶微分方程初值问题的理论结果, 给出求解终值问题的混合配置算法; 最后通过数值模拟验证该方法求解分数阶微分方程终值问题的有效性.  相似文献   

20.
针对一类非线性分数阶微分方程,采用Legendre小波法对非线性分数阶微分方程进行研究.结合BlockPulse函数给出Legendre小波的分数阶积分算子矩阵,利用Block Pulse函数的定义与Legendre小波积分算子矩阵的性质将非线性分数阶微分方程转换为非线性代数方程组,进而对其数值解和误差分析进行研究.结果表明:随着点数增多,数值解的精确度增加.数值算例验证了小波法的可行性和有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号