首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
To gain insight into the function of DNA methylation at cis-regulatory regions and its impact on gene expression, we measured methylation, RNA polymerase occupancy and histone modifications at 16,000 promoters in primary human somatic and germline cells. We find CpG-poor promoters hypermethylated in somatic cells, which does not preclude their activity. This methylation is present in male gametes and results in evolutionary loss of CpG dinucleotides, as measured by divergence between humans and primates. In contrast, strong CpG island promoters are mostly unmethylated, even when inactive. Weak CpG island promoters are distinct, as they are preferential targets for de novo methylation in somatic cells. Notably, most germline-specific genes are methylated in somatic cells, suggesting additional functional selection. These results show that promoter sequence and gene function are major predictors of promoter methylation states. Moreover, we observe that inactive unmethylated CpG island promoters show elevated levels of dimethylation of Lys4 of histone H3, suggesting that this chromatin mark may protect DNA from methylation.  相似文献   

5.
RNA polymerase is poised for activation across the genome   总被引:2,自引:0,他引:2  
  相似文献   

6.
TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer   总被引:28,自引:0,他引:28  
The existence of tumor-suppressor genes was originally demonstrated by functional complementation through whole-cell and microcell fusion. Transfer of chromosome 11 into a human non-small-cell lung cancer (NSCLC) cell line, A549, suppresses tumorigenicity. Loss of heterozygosity (LOH) on the long arm of chromosome 11 has been reported in NSCLC and other cancers. Several independent studies indicate that multiple tumor-suppressor genes are found in this region, including the gene PPP2R1B at 11q23-24 (ref. 7). Linkage studies of NSCLC are precluded because no hereditary forms are known. We previously identified a region of 700 kb on 11q23.2 that completely suppresses tumorigenicity of A549 human NSCLC cells. Most of this tumor-suppressor activity localizes to a 100-kb segment by functional complementation. Here we report that this region contains a single confirmed gene, TSLC1, whose expression is reduced or absent in A549 and several other NSCLC, hepatocellular carcinoma (HCC) and pancreatic cancer (PaC) cell lines. TSLC1 expression or suppression is correlated with promoter methylation state in these cell lines. Restoration of TSLC1 expression to normal or higher levels suppresses tumor formation by A549 cells in nude mice. Only 2 inactivating mutations of TSLC1 were discovered in 161 tumors and tumor cell lines, both among the 20 primary tumors with LOH for 11q23.2. Promoter methylation was observed in 15 of the other 18 primary NSCLC, HCC and PaC tumors with LOH for 11q23.2. Thus, attenuation of TSLC1 expression occurred in 85% of primary tumors with LOH. Hypermethylation of the TSLC1 promoter would seem to represent the 'second hit' in NSCLC with LOH.  相似文献   

7.
8.
Genetic disorders affecting the central nervous system (CNS) can potentially be treated by gene transfer using vectors which infect and express genes in post-mitotic neurons. Herpesviruses establish latent infections in neurons during which only one viral gene (LAT) is expressed, thus the LAT promoter may express foreign genes in latently infected CNS cells. Expression of a beta-glucuronidase gene driven by the LAT promoter was tested in mice lacking this enzyme, which are a model for a human genetic disease affecting the CNS (mucopolysaccharidosis VII, Sly disease). Cells expressing the missing enzymatic activity were present in the trigeminal ganglia and brainstems of latently infected animals, up to four months post-inoculation, demonstrating the potential of this approach for the long-term expression of foreign genes in the CNS.  相似文献   

9.
DNA methylation is extensively reprogrammed during the early phases of mammalian development, yet genomic targets of this process are largely unknown. We optimized methylated DNA immunoprecipitation for low numbers of cells and profiled DNA methylation during early development of the mouse embryonic lineage in vivo. We observed a major epigenetic switch during implantation at the transition from the blastocyst to the postimplantation epiblast. During this period, DNA methylation is primarily targeted to repress the germline expression program. DNA methylation in the epiblast is also targeted to promoters of lineage-specific genes such as hematopoietic genes, which are subsequently demethylated during terminal differentiation. De novo methylation during early embryogenesis is catalyzed by Dnmt3b, and absence of DNA methylation leads to ectopic gene activation in the embryo. Finally, we identify nonimprinted genes that inherit promoter DNA methylation from parental gametes, suggesting that escape of post-fertilization DNA methylation reprogramming is prevalent in the mouse genome.  相似文献   

10.
11.
12.
Epigenetic silencing in cancer cells is mediated by at least two distinct histone modifications, polycomb-based histone H3 lysine 27 trimethylation (H3K27triM) and H3K9 dimethylation. The relationship between DNA hypermethylation and these histone modifications is not completely understood. Using chromatin immunoprecipitation microarrays (ChIP-chip) in prostate cancer cells compared to normal prostate, we found that up to 5% of promoters (16% CpG islands and 84% non-CpG islands) were enriched with H3K27triM. These genes were silenced specifically in prostate cancer, and those CpG islands affected showed low levels of DNA methylation. Downregulation of the EZH2 histone methyltransferase restored expression of the H3K27triM target genes alone or in synergy with histone deacetylase inhibition, without affecting promoter DNA methylation, and with no effect on the expression of genes silenced by DNA hypermethylation. These data establish EZH2-mediated H3K27triM as a mechanism of tumor-suppressor gene silencing in cancer that is potentially independent of promoter DNA methylation.  相似文献   

13.
14.
Embryonic stem cells rely on Polycomb group proteins to reversibly repress genes required for differentiation. We report that stem cell Polycomb group targets are up to 12-fold more likely to have cancer-specific promoter DNA hypermethylation than non-targets, supporting a stem cell origin of cancer in which reversible gene repression is replaced by permanent silencing, locking the cell into a perpetual state of self-renewal and thereby predisposing to subsequent malignant transformation.  相似文献   

15.
DNA double-strand breaks: signaling, repair and the cancer connection   总被引:38,自引:0,他引:38  
  相似文献   

16.
Cytosine methylation of mammalian DNA is essential for the proper epigenetic regulation of gene expression and maintenance of genomic integrity. To define the mechanism through which demethylated cells die, and to establish a paradigm for identifying genes regulated by DNA methylation, we have generated mice with a conditional allele for the maintenance DNA methyltransferase gene Dnmt1. Cre-mediated deletion of Dnmt1 causes demethylation of cultured fibroblasts and a uniform p53-dependent cell death. Mutational inactivation of Trp53 partially rescues the demethylated fibroblasts for up to five population doublings in culture. Oligonucleotide microarray analysis showed that up to 10% of genes are aberrantly expressed in demethylated fibroblasts. Our results demonstrate that loss of Dnmt1 causes cell-type-specific changes in gene expression that impinge on several pathways, including expression of imprinted genes, cell-cycle control, growth factor/receptor signal transduction and mobilization of retroelements.  相似文献   

17.
18.
DNA methylation is associated with malignant transformation, but limitations imposed by genetic variability, tumor heterogeneity, availability of paired normal tissues and methodologies for global assessment of DNA methylation have limited progress in understanding the extent of epigenetic events in the initiation and progression of human cancer and in identifying genes that undergo methylation during cancer. We developed a mouse model of T/natural killer acute lymphoblastic leukemia that is always preceded by polyclonal lymphocyte expansion to determine how aberrant promoter DNA methylation and consequent gene silencing might be contributing to leukemic transformation. We used restriction landmark genomic scanning with this mouse model of preleukemia reproducibly progressing to leukemia to show that specific genomic methylation is associated with only the leukemic phase and is not random. We also identified Idb4 as a putative tumor-suppressor gene that is methylated in most mouse and human leukemias but in only a minority of other human cancers.  相似文献   

19.
DNA microarrays can be used to identify gene expression changes characteristic of human disease. This is challenging, however, when relevant differences are subtle at the level of individual genes. We introduce an analytical strategy, Gene Set Enrichment Analysis, designed to detect modest but coordinate changes in the expression of groups of functionally related genes. Using this approach, we identify a set of genes involved in oxidative phosphorylation whose expression is coordinately decreased in human diabetic muscle. Expression of these genes is high at sites of insulin-mediated glucose disposal, activated by PGC-1alpha and correlated with total-body aerobic capacity. Our results associate this gene set with clinically important variation in human metabolism and illustrate the value of pathway relationships in the analysis of genomic profiling experiments.  相似文献   

20.
Genome-wide analysis of DNA copy-number changes using cDNA microarrays.   总被引:37,自引:0,他引:37  
Gene amplifications and deletions frequently contribute to tumorigenesis. Characterization of these DNA copy-number changes is important for both the basic understanding of cancer and its diagnosis. Comparative genomic hybridization (CGH) was developed to survey DNA copy-number variations across a whole genome. With CGH, differentially labelled test and reference genomic DNAs are co-hybridized to normal metaphase chromosomes, and fluorescence ratios along the length of chromosomes provide a cytogenetic representation of DNA copy-number variation. CGH, however, has a limited ( approximately 20 Mb) mapping resolution, and higher-resolution techniques, such as fluorescence in situ hybridization (FISH), are prohibitively labour-intensive on a genomic scale. Array-based CGH, in which fluorescence ratios at arrayed DNA elements provide a locus-by-locus measure of DNA copy-number variation, represents another means of achieving increased mapping resolution. Published array CGH methods have relied on large genomic clone (for example BAC) array targets and have covered only a small fraction of the human genome. cDNAs representing over 30,000 radiation-hybrid (RH)-mapped human genes provide an alternative and readily available genomic resource for mapping DNA copy-number changes. Although cDNA microarrays have been used extensively to characterize variation in human gene expression, human genomic DNA is a far more complex mixture than the mRNA representation of human cells. Therefore, analysis of DNA copy-number variation using cDNA microarrays would require a sensitivity of detection an order of magnitude greater than has been routinely reported. We describe here a cDNA microarray-based CGH method, and its application to DNA copy-number variation analysis in breast cancer cell lines and tumours. Using this assay, we were able to identify gene amplifications and deletions genome-wide and with high resolution, and compare alterations in DNA copy number and gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号