首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
为研究氮沉降对林下植物多样性的影响,选取4种中国东部典型的森林类型(热带山地雨林原始林及次生林、亚热带常绿阔叶林、温带针阔混交林和寒温带针叶林),调查林下植物多样性在氮添加处理1年后的变化。结果表明:氮添加显著降低热带山地雨林原始林和次生林林下物种丰富度,且下降幅度随氮添加浓度的上升而增加(p<0.05),同时氮添加也降低温带针阔混交林高氮样方的物种丰富度,但低浓度氮添加却增加林下物种丰富度(p<0.05)。另外,在亚热带常绿阔叶林和寒温带针叶林(高氮样方除外),氮添加增加林下物种多样性,但变化不显著。Shannon-Wiener指数也显示相似的变化趋势。这些结果表明,1年的施氮处理对森林生态系统林下物种多样性有显著的影响,而不同处理水平在不同森林类型下的影响是不同的。这与以往的研究结果并不完全相同。  相似文献   

2.
通过设置对照(0)、低氮(50 kg N/(hm~2·a))、中氮(100 kg N/(hm~2·a))和高氮(150 kg N/(hm~2·a))4种水平的氮添加实验,研究武夷山米槠(Castanopsis carlesii)径向生长的季节特征及其对模拟氮沉降的短期响应。结果表明,米槠的全年生长可分为水分恢复期、快速生长期和缓慢生长期3个阶段。不同生长阶段对施肥的响应不同,低氮和中氮处理对米槠的全年胸径相对生长速率有显著促进作用,这种影响主要在快速生长期(6—10月)产生,氮添加在缓慢生长期(11—4月)对米槠径向生长无显著影响。氮添加对不同径级树木生长的影响存在差异,低氮和中氮处理显著促进低径级(5 cmDBH15 cm)(p0.05)的生长速率,高氮处理的作用不显著;随着径级增大,米槠径向生长对氮添加的敏感性下降,氮添加对高径级(DBH25 cm)米槠径向生长无显著响应。中氮处理显著提高研究区内米槠群落的生物量增长速率(p0.05),其他处理的效果不显著。  相似文献   

3.
【目的】探究氮沉降对杨树人工林土壤微生物群落特征的影响。【方法】以江苏省东台地区沿海杨树人工林为对象,采用Biolog ECO微平板技术,设置4种氮添加水平:N0(0 kg/(hm2·a))、N1(50 kg/(hm2·a))、N2(100 kg/(hm2·a))、N3(150 kg/(hm2·a))模拟不同浓度氮沉降,经过2 a生长季(5—10月)处理,测定杨树林土壤微生物群落碳源利用变化情况。【结果】N2处理可以增强杨树人工林土壤微生物对碳源的代谢能力,氮添加浓度过高则会产生抑制作用; 土壤中微生物对胺类和酚类利用程度表现出较大差异,其中,酚类在高浓度氮处理(N3)时利用程度最高,胺类在低浓度氮(N1)条件下利用程度最高; 硝态氮和平均颜色变化率(AWCD)、Shannon多样性均具有显著正相关性(P<0.05),微生物代谢水平及其结构变化受到硝态氮影响较大。主成分分析表明,PC1和PC2可以表示施氮对微生物群落代谢多样性产生的差异,其中,PC1的方差贡献率最大,碳水化合物、酚类呈负相关(碳源相关系数分别为-0.869、-0.780),氨基酸、羧酸呈正相关(碳源相关系数分别为0.702、0.821),是起主要分异作用的碳源; PC2涵盖了聚合物和胺类两种碳源大类,其中聚合物呈负相关(相关系数为-0.688),胺类呈正相关(相关系数为0.802)。【结论】氮添加会导致杨树人工林土壤微生物群落对碳源利用类型改变,土壤中硝态氮含量与微生物生长代谢及功能多样性呈显著正相关; 六大类碳源中碳水化合物、羧酸是影响土壤微生物群落功能多样性的主要碳源。 关键词:氮沉降; 土壤微生物; 碳源代谢; 群落功能多样性; 杨树人工林  相似文献   

4.
为了解森林生态系统对持续氮增长和快速氮循环的响应模式及反馈机制,选择3种林龄杨树人工林作为试验样地,设置N0(0 g/(m2·a))、N1(5 g/(m2·a))、N2(10 g/(m2·a))、N3(15 g/(m2·a))、N4(30 g/(m2·a))共5个不同浓度进行模拟氮沉降实验,探讨3种林龄杨树人工林土壤有效氮含量及对模拟氮沉降的响应。结果表明:①幼龄林、中龄林和过熟林的铵态氮占总有效氮含量的比例分别为18.50%~28.81%、23.14%~34.52%和32.60%~49.92%; ②随着外源氮浓度的不断增加,3种林龄土壤硝态氮含量都呈显著的增加趋势,且高氮处理对有效氮的影响高于低氮处理,而铵态氮只在幼龄林和中龄林中高氮处理(N3和N4)之间差异显著; ③幼龄林土壤硝态氮含量对不同浓度的氮沉降响应比中龄林和过熟林更为敏感,而铵态氮在3种林龄之间无显著规律; ④3种林龄土壤表层(0~10 cm)的铵态氮、硝态氮含量对氮沉降响应更加敏感。  相似文献   

5.
【目的】凋落物是森林净生产量的重要组分,探讨森林凋落物生产及其养分归还量对氮磷添加的响应,为亚热带常绿阔叶林可持续经营提供科学依据。【方法】选择安徽池州亚热带常绿阔叶林,包括甜槠(Castanopsis eyrei)老龄林和苦槠(C. sclerophylla)中龄林,开展氮磷添加试验,设置3个处理,即氮[N 100 kg /(hm2·a)]、氮+磷[N 100 kg /(hm2·a) +P 50 kg /(hm2·a)]和对照(CK,无氮磷添加)。采用凋落物收集框法,对林分凋落物生产量及其养分归还量进行了为期1年的监测(2017年5月至2018年4月)。【结果】N+P处理下,苦槠林和甜槠林总凋落物量最高值分别为9.502、7.120 t/(hm2·a);其次是N处理,分别为8.393、7.041 t/(hm2·a);CK林分分别为7.724和6.697 t/(hm2·a),氮磷添加提高了总凋落物量,但不同处理间没有显著差异。在N处理和对照条件下,两林分凋落物各组分所占比例由大到小顺序均为:落叶、落枝、碎屑、落花落果。但在N+P处理的苦槠林中由大到小依次为:落叶、落枝、落花落果、碎屑。N处理下,苦槠林和甜槠林凋落物年均氮含量分别为14.199和13.648 g/kg,N+P处理分别为13.863和13.650 g/kg,CK林分分别为13.384和13.094 g/kg。各处理下苦槠林和甜槠林凋落物年均磷含量由大到小顺序为N+P、CK、N处理。两林分凋落物的氮磷含量和年归还量不同处理间差异均不显著;不同处理间的苦槠林和甜槠林凋落物的氮磷比均无明显差异。【结论】氮沉降提高了苦槠和甜槠林凋落物产量,磷添加具有一定的增效作用,表明磷添加缓解了氮沉降引起的磷限制作用。  相似文献   

6.
以华北落叶松(Larix principis-rupprechtii)人工林幼龄林为研究对象, 设置3个梯度的氮添加水平(0, 20和50 kg N/(ha·a), 即N0, N20和N50), 研究氮添加对人工林草本植物群落特征及地上生产力的影响, 得到以下结果。1) 氮添加改变了土壤微环境, 降低土壤温度、显著地增加土壤水分。2) 氮添加在一定程度上促进落叶松人工林草本植物群落的生长(P>0.05)。与对照组(N0)相比, 植物群落总盖度在N20和N50样方中分别增加6.83%和15.03% (2014 年), 或9.80%和12.94% (2016年), 但草本植物地上生物量的累积无显著变化; 群落总盖度和地上生物量与土壤含水量显著正相关(P<0.05)。3) 氮添加对落叶松人工林草本植物群落的多样性和均匀度无显著影响, 但是低浓度氮添加(即N20)显著地增加单位面积内物种的丰富度(2014年单位面积内物种丰富度在N20样方中增加23.33%, P<0.05)。4) 氮添加对不同植物功能群的影响不同, 其中氮添加促进蓼科和莎草科植物的生长, 抑制禾本科和菊科植物的生长, 对豆科植物无影响, 说明温带落叶松人工林草本植物群落对氮沉降的响应敏感, 氮添加在一定程度上促进草本植物的生长, 同时氮添加改变了草本植物不同功能群间的竞争力。  相似文献   

7.
【目的】探究氮沉降增加对阔叶红松(Pinus koraiensis)混交林土壤微生物群落特征的影响。【方法】对阔叶红松林进行模拟氮沉降实验,设置对照(N0,0 kg/(hm2·a))、低氮(N1, 30 kg/(hm2·a))、中氮(N2, 60 kg/(hm2·a))和高氮(N3, 120 kg/(hm2·a))共4组处理,在实验样地内采集0~10 cm、≥10~20 cm土层中的土壤,测定土壤微生物生物量碳(SMBC)及土壤微生物生物量氮(SMBN)含量及变化。【结果】① 模拟氮沉降未改变SMBC、SMBN及SMBC/SMBN的垂直分布; SMBC、SMBN在生长季月动态曲线均为以8月中旬为峰值的单峰型曲线,SMBC/SMBN的曲线波动较大,0~10 cm土层以N0处理的结果波动范围最小(2.83~6.97)。② 模拟氮沉降仅对0~10 cm土层6、8月中旬的SMBC以及5、6、8月中旬的SMBC/SMBN有显著影响(P<0.05),而对SMBC、SMBN及SMBC/SMBN的生长季平均值无显著影响。【结论】模拟氮沉降对阔叶红松林土壤微生物生物量的影响仅在个别月份中表现明显,而对于整个生长季而言,更长时间的模拟氮沉降实验才可能对土壤微生物生物量产生明显的影响。  相似文献   

8.
以福建省武夷山亚热带常绿阔叶米槠林为研究对象, 开展氮添加实验。采用4个氮添加梯度(CK, N50, N100和N150, 分别表示氮添加0, 50, 100和150 kg/(hm2·a))模拟自然氮沉降变化, 探究氮添加对土壤有机碳及土壤呼吸的影响。结果表明, 氮添加对表层土壤(0~20 cm)总有机碳的影响不显著, 对颗粒态有机碳(POC)和矿物结合态有机碳(MAOC)两种不同碳组分含量的影响不同。其中, N100和N150处理分别使土壤POC含量显著上升110.7%和147.9% (p1 = 0.024, p2 < 0.001); 土壤MAOC含量则随氮添加量升高呈下降趋势, 但差异不显著。土壤呼吸速率的年际波动呈单峰式, 且在不同观测时间内, 各样地土壤呼吸速率对氮添加的响应不同。通过土壤呼吸速率与土壤温度的拟合方程计算, 得到2018—2020年CK, N50, N100和N150样地土壤呼吸年均碳排放量分别为1205.31, 1191.56, 1287.56和1128.61 g C/m2。其中, N50样地与CK样地无显著差异, N100样地显著上升6.82% (p<0.001), N150显著下降 6.8% (p<0.001), 即N100可以促进土壤呼吸年碳排放, 而N150对土壤呼吸年碳排放有抑制作用。  相似文献   

9.
喀斯特原生乔木林和次生林土壤氮矿化特征   总被引:1,自引:0,他引:1  
【目的】探究喀斯特森林土壤氮矿化特征及供氮能力。【方法】以贵州喀斯特原生乔木林和次生林为研究对象,采用树脂芯法,原位连续培养测定土壤氮矿化/硝化动态特征。【结果】①喀斯特原生乔木林和次生林土壤无机氮含量随培养时间延长存在明显的变化,NH+4-N含量呈先增加后减少再增加趋势,NO-3-N含量表现为总体增加趋势。NH+4-N是土壤有效氮的主要存在形式,其含量占土壤无机氮的84.57%~94.31%。②两演替群落土壤氮矿化速率呈“V”形变化,范围分别为-0.43~0.97 mg/(kg·d)和-0.91~1.43 mg/(kg·d); 硝化速率呈波动上升趋势,范围分别为0.21~0.49 mg/(kg·d)和0.03~0.31 mg/(kg·d)。③原生乔木林土壤无机氮含量、矿化速率、氨化速率和硝化速率均高于次生林。④原生乔木林土壤氮全年净矿化总量170.82 kg/(hm2·a),是次生林的2.48倍,两种林分土壤净硝化氮分别占净矿化氮的95%和100%。【结论】喀斯特森林土壤供氮能力较强,但土壤氮矿化过程中氮硝化占主导,表明土壤中植物可利用的氮素易于淋溶或挥发损失。  相似文献   

10.
选择苏北沿海5、9和15年生杨树人工林作为实验地,采用随机区组设计,设置了N0(CK)、N1(5 g/(m2·a))、N2(10 g/(m2·a))、N3(15 g/(m2·a))、N4(30 g/(m2·a))共5个不同浓度的氮沉降处理,研究氮沉降对土壤细根糖化学组分的影响。结果表明:(1)3个林龄杨树林地下细根中可溶性糖、淀粉含量,在1 a的观测期内,最大值出现在12月份,其中可溶性糖在1 a中的变化幅度最大,最高值与最低值相差约7倍; 而作为结构性碳水化合物的纤维素和木质素在1 a的观测期内相对较为稳定。(2)随着外源氮输入增加,细根中可溶性糖、淀粉含量在N2水平最大,在N4水平则低于对照。而非结构性碳水化合物在氮增加处理的不同水平间差异不显著(p>0.05)。总之,一定浓度的氮增加,将增加细根中活性代谢物质的碳投入。(3)杨树细根生物量与非结构性碳水化合物存在显著的正相关,杨树细根糖化学组分与土壤C、N以及温湿度没有显著相关性。  相似文献   

11.
以西南岩溶地区天然次生幼龄林、中龄林和近熟林为研究对象,采取以空间代替时间的群落生态学方法,研究不同林分结构特征的变化规律和森林群落不同层次的构建机制.结果表明:岩溶地区天然次生林恢复过程中,林分的结构特征发生了显著变化.由幼龄林、中龄林到近熟林,林冠层(林木胸径DBH>5 cm、树高H>5 m)的个体密度、胸高断面积...  相似文献   

12.
【目的】灌木层是森林生态系统的重要组成部分,建立我国人工林林下灌木层植物多样性数据库,为森林群落结构维持、生物多样性保护提供技术支撑。【方法】采用结构方程模型(SEM)揭示我国人工林林下灌木层植物多样性空间变异和影响要素。【结果】①林下灌木层植物多样性从南到北逐渐减小;②随着乔木胸径的增大,林下灌木层植物多样性逐渐增大,但分布均匀度有降低趋势;③随着人工林郁闭度的增加,植物多样性呈现先增大后减小趋势,郁闭度约为65.8%时Shannon-Wiener多样性指数达到峰值;④随着林分密度的增大,林下灌木层植物多样性逐渐减小;⑤温度、降水、郁闭度、林分胸径、树高和林分密度因子均对林下灌木层植物多样性具有直接或间接的作用,其中郁闭度对其影响存在阈值(65.8%),当郁闭度超过此阈值,温度和降水为主导因子,而郁闭度低于此阈值,温度的影响权重降低,林下光照的主导作用增强。【结论】在探究人工林林下灌木层植物多样性空间变异及影响要素的过程中,需要综合考虑各种影响因子,并借助多种多样性指数,综合评判林下植物多样性变化情况。本研究结果可为调控人工林林下灌木层植物多样性及林下植物恢复提供参考依据。  相似文献   

13.
闽北3种人工林土壤游离氨基酸组成及其差异研究   总被引:1,自引:0,他引:1  
3种人工林土壤游离氨基酸总含量表现出明显的垂直分布特征.针阔叶混交林和针叶林表层(0~20 cm)土壤游离氨基酸含量显著高于深层(20~40 cm)土壤的含量(P<0.05);而阔叶林表层土壤游离氨基酸含量低于深层土壤的含量,但差异不显著.土壤游离氨基酸各组分均表现出显著的垂直分布特征,阔叶林表层土壤中天冬氨酸、谷氨酸、组氨酸、精氨酸和苯丙氨酸的含量显著高于深层土壤对应组分的含量,但苏氨酸、脯氨酸、甘氨酸、丙氨酸、亮氨酸显著低于深层土壤对应组分的含量;针阔叶混交林表层土 壤中酪氨酸、组氨酸和脯氨酸低于深层土壤的含量,而其余组分均显著高于深层土壤的含量;而针叶林中除甲硫氨酸和赖氨酸外,其余15种氨基酸在表层土壤中的含量均高于深层土壤中对应组分的含量.3种人工林中无论是表层土壤还是深层土壤,游离氨基酸均以中性氨基酸含量为最高,碱性和酸性氨基酸含量次之,含硫氨基酸含量最低.表层土壤中天冬氨酸、丝氨酸、谷氨酸、甘氨酸、丙氨酸、缬草氨酸、甲硫氨酸、异亮氨酸、亮氨酸和精氨酸的含量依次为:针叶林<阔叶林<针阔叶混交林,而赖氨酸和脯氨酸的含量则以针叶林为最高,针阔叶混交林次之,阔叶林最低;阔叶林表层土壤中络氨酸和胱氨酸含量最高.深层土壤中各组分氨基酸除赖氨酸之外均以针叶林中含量最低,针阔叶混交林次之,而阔叶林中含量最高.  相似文献   

14.
寒温带林区不同林型土壤中游离氨基酸的研究   总被引:3,自引:0,他引:3  
为了解大兴安岭北部寒温带林区不同林型各层次土壤游离氨基酸种类和含量的变化,以及不同林型对土壤游离氨基酸含量的影响,应用柱前衍生高效液相色谱法采用梯度洗脱在254 nm波长处检测土壤中常见的17种游离氨基酸。结果表明:①不同林型下游离氨基酸态氮的平均含量分别为杜鹃-白桦林(33.86 μg/g)>杜鹃-落叶松林(31.44 μg/g)>杜香-落叶松林(28.76 μg/g)>偃松林(27.66 μg/g)。②同一林型不同土壤层次游离氨基酸态氮含量整体表现为凋落物层高于矿质土层,0~5 cm的矿质土层高于≥5~20 cm的矿质土层。③不同林型各土壤层次检测出的氨基酸种类和含量不同,种类上各林型均以凋落物层出来最多; 含量上大多表现为中性氨基酸所占的比例最大,酸性和碱性氨基酸次之,含硫氨基酸最少。研究结果在一定程度上说明不同森林类型由于林内气候环境、土壤条件和林下伴生树种等的差异,对土壤游离氨基酸含量和种类存在不同程度的影响。  相似文献   

15.
选取黑龙江五营温带森林和福建武夷山亚热带森林两个站点, 通过120天室内培养实验, 探讨氮磷(NH4NO3和NaH2PO4)添加对两种森林表层土壤(0~20 cm)碳氮矿化的影响。结果表明, 氮添加通过降低土壤微生物的生物量及其碳氮比来降低亚热带森林的土壤碳矿化, 但对温带森林的土壤碳矿化没有显著影响; 磷添加对两种森林的土壤碳矿化均没有显著影响。磷添加显著地增加温带森林的土壤净氮矿化, 氮添加显著地降低温带森林的土壤净氮矿化, 氮添加和磷添加均对亚热带森林的土壤净氮矿化没有显著影响。总体而言, 可能由于养分可利用性和土壤性质的区别, 温带森林和亚热带森林土壤碳氮矿化对氮磷添加的响应存在区别。  相似文献   

16.
 中国分布的疏林类型众多,除了在热带分布的疏林(或稀树干草原)外,还有温带阔叶疏林和温带山地针叶疏林两种生态系统,具体包括榆树(Ulmus pumila)疏林、天山云杉(Picea schrekiana)疏林、侧柏(Platycladus orientalis)疏林、杜松(Juniperus rigida)疏林、樟子松(Pinus sylvestnis var. mongolica)疏林、西藏落叶松(Larix tibetica)疏林、亚东冷杉(Abies densa)疏林、巨柏(Cupressus gigantea)疏林、大果圆柏(Sabina tibetica)疏林、滇藏方枝柏(Sabina wallichiana)疏林、方枝柏(Sabina saltuaria)疏林、大果红杉(Larix potaninii var. macrocarpa)疏林、西藏柏木(Cupressus torulosa)疏林、密枝圆柏(Sabina convallium)疏林、长叶松(Pinus roxburghii)疏林、云南松(Pinus yunnanensis)疏林、川西云杉(Picea likiangensis var. balfouriana)疏林、黄榆(Ulmus macrocarpa)疏林、臭椿(Ailanthus altissima)疏林等生态系统类型,疏林生态系统(或疏林植被)应该是介于森林和草原(或灌丛)之间的一种过渡的植被类型,是一种地带性植被类型.疏林的分布是系列生态因子综合作用的结果,但其决定因子是水分.在中国大陆,沿纬度梯度从低到高的地带性植被应为雨林、季雨林、常绿阔叶林、落叶阔叶林、疏林、灌丛或草原,从东到西沿经度梯度依次为(阔叶和针叶)森林、(阔叶和针叶)疏林、草原、荒漠.在高原地区,沿海拔梯度的分布从低到高主要是森林、疏林、灌丛、草原或草甸.与森林、灌丛和草原相比,疏林的分布面积相对较小.中国疏林的分布区域大体位于农牧交错带地区,即从森林到草原过渡的地区.对疏林成因的理解,有利于区域生态恢复措施的选择.  相似文献   

17.
【目的】确定红松(Pinus koraiensis)幼树在次生林生境中生长的最适林隙面积及林隙内位置,为恢复温带地带性顶极植被阔叶红松林提供科学依据,同时为优化抚育经营措施提供支持。【方法】以黑龙江小兴安岭红松幼树(15 a)为试验材料,采用CIRAS-2光合仪分别测定蒙古栎(Quercus mongolica)次生林4种林隙[大(206.1 m2)、中(116.9 m2)、小(52.4 m2)、林内(对照,12.6 m2)]内3种位置(中心区、过渡区与边缘区)生长的红松幼树光合参数(最大净光合速率、光饱和点、光补偿点和蒸腾速率等)、叶绿素含量和微环境因子(透光率、气温),采用带有180°鱼眼镜头的Nikon CoolPix 4500数码相机采集林隙照片并计算出各样地透光率。通过比较不同大小林隙及隙内不同位置红松幼树光合能力之间的差异,分析林隙大小及隙内不同位置对红松幼树光合能力的影响。【结果】①红松幼树的光合能力在中、小林隙内显著提高,中、小林隙使其最大净光合速率较在林内(对照)显著提高20.0%~60.7%,且中林隙又显著高于小林隙9.2%~15.1%,而大林隙对其无显著影响;②在各大小林隙内红松幼树最大净光合速率沿林隙中心区至边缘区微环境梯度均呈规律性递减(92.7%~22.5%);③在中、小林隙内红松幼树的光饱和点高于林内,但光补偿点却低于林内;在中林隙内其蒸腾速率、气孔导度和胞间CO2浓度高于林内,而叶绿素含量低于林内;在各林隙内沿中心区至边缘区微环境梯度,红松幼树的光饱和点降低而光补偿点提高,蒸腾速率和气孔导度呈递减趋势,而叶绿素含量呈递增趋势。【结论】红松幼树在蒙古栎林中林隙(116.9 m2)内的中心区光合能力较强。建议在阔叶红松林恢复实践中创建适宜大小的林隙,充分利用林隙内的中心位置来加速其恢复进程。  相似文献   

18.
【目的】新一代天基测高系统全球生态系统动力学调查(GEDI)对森林观测及经营具有重要意义,为探究GEDI V2(GEDI第2版)数据反演林下地形的性能,利用机载雷达数据验证林下地形反演精度,并探究反演精度的影响因素。【方法】分别以美国西波拉森林与中国帽儿山森林为研究对象,利用G-liht及帽儿山高精度机载雷达数据验证GEDI V2数据在针叶林及针阔叶混交林下反演地形的性能,并分析不同光束强度、光斑时间、坡度及植被覆盖度对地形反演精度的影响。【结果】美国西波拉针叶林地区地形反演精度均方根误差(RMSE)为2.33 m,平均绝对误差(MAE)为1.48 m;帽儿山针阔叶混交林地区地形反演精度RMSE为4.49 m, MAE为3.33 m。随着坡度、植被覆盖度增大,两种森林类型地形反演精度均降低。【结论】GEDI V2数据反演针叶林林下地形精度要优于针阔叶混交林,强光束优于覆盖光束,湿润地区白天效果更优,干旱地区黑夜效果更优;平缓地区数据使用效果极好,陡峭地区精度降低;中低植被覆盖度区域地形反演精度较高,高植被覆盖区域地形测定性能有所下降。  相似文献   

19.
为了解广西马尾松Pinus massoniana人工林林下木本植物的径级结构特征,采用样地调查法对马尾松人工林林下木本植物进行每木调查,分析不同林龄、不同造林密度和不同气候条件的林下木本植物径级结构。结果表明:(1)不同林龄马尾松人工林林下木本植物径级结构皆有不同,随着近自然恢复的进行,阔叶树密度、径级和木本植物个体之间分化程度呈先减小后增大的趋势,过熟林林下木本植物个体生长分化程度最高;(2)两种造林密度中,高密度林林下木本植物株数更多,胸径分化程度更大,生境多样性更高;(3)在不同气候条件下,随着纬度的降低,马尾松人工林中龄林和过熟林林下木本植物的平均胸径增大,且生长分化程度变低。初步研究发现,马尾松人工林随着近自然恢复的进行具有演替为地带性顶极群落的趋势。相对较大的造林密度有利于马尾松人工纯林林下木本植物生长,不同气候条件对马尾松人工林林下木本植物的径级结构有着明显影响,水热条件相对更丰富的北热带气候林下木本植物生长更好且个体分化程度更低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号