首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
高速铁路用水泥乳化沥青浆体的物理结构   总被引:1,自引:0,他引:1  
基于硬化硅酸盐水泥浆体的Powers理论和水泥乳化沥青浆体的配合比,通过理论计算和X射线衍射(XRD)、扫描电子显微镜(SEM)、能量色散X射线谱仪(EDAX)等相分析方法,分析了硬化水泥乳化沥青浆体的物相组成与微结构.结果表明,硬化水泥乳化沥青浆体的物相组成与微结构取决于沥灰比和水灰比.提出了表征硬化水泥乳化沥青浆体物理结构的两种结构模型,以沥青为连续相、水泥相为分散相的有机-无机复合胶凝体结构模型—I型模型;以水泥相为基体、沥青嵌入其中的无机-有机复合胶凝体结构模型—II型模型.为深入分析高速铁路板式无砟轨道结构中水泥乳化沥青砂浆的微结构参数和力学性能及其衰变规律奠定了基础.  相似文献   

2.
为了探究冻融作用下超高性能混凝土(UHPC)的抗冻性机理,利用纳米压痕技术对钢纤维-浆体以及细砂-浆体两种界面过渡区的微观结构和微观力学性能进行研究.研究表明:钢纤维-浆体界面过渡区中存在明显薄弱带,微观结构受冻融影响较大.冻融作用下水化硅酸钙、氢氧化钙的弹性模量和硬度相对变化幅度小于0.2.微孔洞体积分数随冻融循环次数增加呈指数增长,且孔径逐渐扩展到几十微米.钢纤维界面过渡区厚度经0~1500次冻融后从20μm逐渐扩展到65μm左右.随冻融循环次数增加,微孔洞体积分数呈指数函数增长,钢纤维界面过渡区厚度也逐渐扩展,因此可以用来有效地表征冻融作用下UHPC界面过渡区的微观力学性能劣化机理.  相似文献   

3.
研究了养护温度对微膨胀复合胶凝材料膨胀效能、强度、水化程度及微观构影响.果表明:标准养护条件下(20℃),晶状钙矾石基本都生长在孔缝中,对膨胀贡献较小,凝胶颗粒状钙矾石对膨胀贡献更大;提高养护温度(40℃)能够促进膨胀剂水化,但发展更快强度限制了膨胀发展,凝胶或微晶状钙矾石对孔隙填充使中等养护温度硬化胶凝材料浆体最为密实;更高养护温度时(60℃),硬化浆体内部生成了大量粗棒状钙矾石晶体,导致其在水化早期即产生过大膨胀,持续高温高湿环境使少量钙矾石发生分,致使后期限制膨胀率有所降低.适度膨胀对硬化浆体孔构是有益,能够使大孔明显减少,但过大膨胀会对孔构造成不利影响,大孔数量偏多.  相似文献   

4.
测试了沪昆高铁江西段现场成型CRTS II型CA砂浆长期力学性能的发展变化,并通过沥青抽滤,水泥热重分析,压汞法和核磁共振等试验方法分析了沥青组分、砂浆内部微观孔隙结构变化,水泥水化程度对砂浆长期力学性能的影响.结果发现:砂浆28 d抗压强度与弹性模量均达到了规范要求,随着龄期延长,砂浆力学性能持续升高,但42 d以后砂浆力学性能增长放缓,水泥的持续水化使得砂浆内部孔隙不断细化,强度上升;养护7 d后,砂浆内沥青含量已经固定,成膜固化过程完成.  相似文献   

5.
分析了一种特殊胶凝材料-水泥沥青胶凝材料的水化硬化机理.采用等温量热法、X射线衍射分析和环境扫描电镜对用阴离子沥青乳液和硅酸盐水泥配制的水泥沥青胶凝材料的水化进程、水化产物组成和微观形貌进行了观察.水泥沥青胶凝材料的水化过程仍然可以分为快速反应期,诱导期、加速期、减速期和衰退期.沥青与水泥之间没有化学反应,没有新的矿物相生成.水泥沥青胶凝材料的水化硬化过程起始于水泥的水化,当水泥的水化反应进入加速期,水化放热速率接近最大时,沥青开始破乳成膜.在水泥沥青胶凝材料硬化体中,水泥的水化产物形成骨架,沥青膜包覆其上,是连续相;两者形成互穿体系.乳化沥青中的乳化剂会延缓水泥的水化过程.  相似文献   

6.
通过改变水灰比、减水剂掺量,测定不同时间水泥浆体中的自由溶液量、浆体流动度与流动度经时损失,并利用光学显微镜直接观测新拌水泥浆体中水的分布情况以及水泥颗粒的絮凝情况,研究自由溶液量的变化情况及其对浆体流动度和泌水的影响规律.研究结果表明,吸附水对水泥-减水剂系统的初始流动度、流动度经时损失和泌水等相容性表现有重要影响.增加水泥浆体中的吸附水,能够改善水泥-减水剂系统的相容性.掺加减水剂,在打破絮凝结构的同时增加吸附水,从而提高浆体的流动性.聚羧酸减水剂增加吸附水的能力要高于萘系减水剂.过掺减水剂不是导致泌水的主要原因,过大的水灰比和水泥颗粒表面吸附水的能力不足才是导致泌水的根本原因.  相似文献   

7.
作为建筑材料和地基的土体处于常温、常压、常态的大气环境下,大气氧化过程是缓慢的、不易察觉的,但对土质长期劣化效果不容忽视.本文以此命题为出发点,以大气氧化过程中微观孔隙变化特征为突破口,联合扫描电镜测试、压汞法及氮吸附法研究大气环境作用对湛江黏土的微观结构改造作用及其对土性影响机理.研究表明,大气氧化后土色由青灰色、绿灰色变为淡黄棕、黄棕色,颗粒团聚程度增强,塑性降低,膨胀性与收缩性减弱,灵敏性与结构屈服强度明显降低.大气环境作用对d0.1?m孔隙组产生"缩合"效果,对d1?m孔隙组产生"胀散"效果,表现为氧化土的总孔隙体积减小,但d1?m的孔隙体积明显增大,局部出现断裂孔隙,"墨水瓶"型孔隙减少,开放性孔隙向封闭性孔隙转化.湛江黏土在大气影响下土性发生异变并不是土的矿物本性变化所引起,而是水-土-电解质-大气间的化学反应与运动导致颗粒联结形式更改进而重塑微观结构所导致,土的超微观结构形态变化是发生这一现象的根本因素.鉴于大气氧化过程导致的结构强度的减损效果对土体稳定性的影响是长期的且潜在危害较大,应加强监测环境物化因素变化对岩土工程的影响.  相似文献   

8.
早期水化反应对于硅酸盐水泥浆体微观结构的形成和强度的发展有着重要影响.然而由于水泥水化过程中发生了多相多尺寸并且相互关联的复杂的化学和物理变化,因此使得人工推导水化动力学方程的研究存在很高的难度.利用基因表达式编程与粒子群算法相结合的进化计算方法从观测到的硅酸盐水泥水化程度时间序列数据中自动地萃取出了水化早期的动力学方程,并通过GPU进行并行加速来减少运算时间.研究显示,根据该动力学方程得到的模拟曲线可以很好的吻合水化早期观测到的实验数据,而且即使化学组成、颗粒尺寸和养护条件发生改变,该方程仍然具有良好的泛化能力.  相似文献   

9.
以桂林红黏土为研究对象,借助扫描电子显微镜法(SEM)和压汞法(MIP)对不同初始孔隙比的压实土样和泥浆土样在干化-湿化路径下微观结构演化规律开展研究.扫描电子显微镜结果表明,饱和压实土样的微观结构主要由集聚体、集聚体间大孔隙和集聚体内小孔隙(颗粒间孔隙)组成;饱和泥浆土样的微观结构主要由片层状的黏土颗粒和较为均匀的颗...  相似文献   

10.
通过透射电子显微术(TEM)研究了水泥早期水化产物Ca(OH)2、水化硅酸钙凝胶(CSH)、钙矾石(AFt)、单硫水化硫铝酸钙(AFm)微观形貌、结晶形态、元素构成.并结合SEM与XRD研究结果,讨论了TEM在研究水泥早期水化产物方面优势.研究结果表明,使用TEM研究水泥早期水化产物,其观察结果比SEM更加精确和可靠.水化初期生成CSH凝胶为具有大量皱褶非晶态箔状产物,其Ca/Si比为1.3±0.2;水化初期生成AFt和AFm,发现了两者微观貌差别,确认了两者均为由尺寸小于20nm纳米晶粒无序组成多晶层状结构.本文讨论了SEM和TEM方法分别所CSH凝胶Ca/Si比差异原因.  相似文献   

11.
二氧化碳埋存对地层岩石影响的室内研究   总被引:1,自引:0,他引:1  
利用XRD,SEM,三轴岩石实验系统及岩心驱替实验装置研究了二氧化碳溶蚀对储层岩石矿物组分、孔隙结构及力学性能的影响.结果表明,在一定条件下,二氧化碳对岩石的溶蚀主要受岩石的结构和构造、流体组成及外部动力条件的影响,即具有层理构造的岩心,其层理面是优先溶蚀区域,应力变化时这些部位微裂纹的产生及扩展的几率最大,主应力也有一定的控制作用;在稳定水体环境控制的块状构造的岩心中,CO2的溶蚀导致岩心孔隙变大,并产生次生孔隙;裂缝的形成受溶蚀、流动方向及应力的共同控制.在二氧化碳水溶液注入过程中,出口端气体流速有一个突然大幅度增加的过程,表明流动过程中发生的溶蚀作用产生了2种变化:(1)岩石微裂缝的产生及闭合;(2)岩石颗粒的运移.静态溶蚀实验表明,随着溶蚀时间的增加,岩石的抗拉强度及抗压强度均下降,证实了胶结强度的明显下降.渗透率的增加及微裂纹(或裂缝)的产生造成封存的效果变差,从而影响了封存的效果.  相似文献   

12.
含高浓度固体粒状物料管流中水击规律   总被引:7,自引:1,他引:6  
分别研究了伪均质流和非均质流这两类浆体水击的规律 ,推导了浆体水击压力波波速、最大水击附加压强计算公式 ,并根据实验对公式作了初步验证 .  相似文献   

13.
多孔水泥基材料中的水分运动对研究其劣化过程和耐久性非常重要.一些传统的测定水泥基材料中水分运动的方法大都基于材料的质量变化、电学或者核磁共振等特性.本文应用先进的实时热中子成像技术,通过理论分析和试验研究,对水泥基材料中的水分运动包括水分向内部渗透和向外部扩散进行了可视化再现和定量测定.由于热中子对氢原子强烈的衰减特性,热中子成像表现出对材料中水分存在的高度敏感性.基于点散射函数(PScF)建立了对原始成像所含中子传输信息的定量分析方法.对未开裂和开裂砂浆试件的水分渗透过程以及干燥失水过程进行了实时热中子成像试验.结果显示,热中子成像是可视化观测和定量测定多孔水泥基材料中水分运动特性的有力工具,试验结果将有助于更好地理解水泥基材料的劣化规律以寻求提高其耐久性的措施.  相似文献   

14.
针对具有形状要求的先进高强钢(AHSS)汽车结构件热成形时经常发生破裂现象,从其各处分布的不同应力方式对样件微观结构、厚度分布和力学性能影响作用存在差异的角度分析,首次利用高速加热炉、急冷处理室和带有冷却水道模具的一体化实验设备,通过在冲压前设计急冷处理新方法,即由现有工艺的奥氏体化后直接冲压成形,转变成先经急冷处理,然后到700°C左右成形,其目的是:使得样件上以拉应力为主的加载区,因具有较好硬化指数n值而获得较好成形性;以压应力为主的某些抑制马氏体相变区域,因提前的急冷处理而在微观奥氏体母相中增加马氏体新相形核的几率,获得致密的组织结构,以改善强韧性.实验证明,通过冲压前的急冷处理,样件更为完整,未出现开裂现象;微观具有明显细化的马氏体排列形态;宏观硬度分布均匀,且都在460 Hv以上,能够满足高强度、高韧性的性能要求.从而,验证了该急冷方法的科学有效,并突破了国内现有热成形AHSS易开裂的瓶颈问题,为建立我国自有知识产权、复杂形状的热成形AHSS结构件生产工艺路线提供了依据.  相似文献   

15.
胶结颗粒料坝是一种新坝型,正逐渐被国际坝工界所认可,得到推广应用.本文综述了胶结颗粒料坝围绕三大科学问题深化研究取得的新进展,论述了新型的胶结人工砂石坝、材料抗渗透溶蚀特性、智能化加浆振捣技术、数字拌和设备与数字化质量控制技术,介绍了工程应用.胶结颗粒料坝具有环境友好、经济节约、安全可靠等优点,被水利部列入水利先进实用技术重点推广指导目录.当前国内已建、在建胶结颗粒料坝工程全部采用了该技术,具有广泛的应用前景.  相似文献   

16.
采用银镜反应的方法,实现了在二氧化硅微球表面纳米银粒子的制备.通过改变反应温度、银氨溶液的浓度、还原剂的种类以及离心洗涤的次数,可以时纳米银粒子的粒径、包覆程度和反应速度进行调节.纳米银粒子包覆的二氧化硅胶体微球的微观结构可利用透射电子显微镜(TEM)进行表征.  相似文献   

17.
分别配制了Bi含量为90,100和110mole%的前驱体,在Pt/Ti/SiO2/Si衬底上制备Bi3.4Ce0.6Ti3O12薄膜,研究前驱体中Bi含量对其微观结构和铁电性能的影响.前驱体中Bi含量增加可以有效地改善薄膜的结晶性能和表面形貌.对Pt/Bi3.4Ce0.6Ti3O12/Pt电容结构进行电学性能测量,发现Bi过量10%的前驱体制备的Bi3.4Ce0.6Ti3O12薄膜具有较好的性能:室温下,在测试频率1kHz时,其介电常数为172,介电损耗为0.033;在测试电场为600kV/cm时,其剩余极化值(2Pr)和矫顽电场(2Ec)分别达到67.1μC/cm2和299.7kV/cm;同时还表现出良好的抗疲劳特性和绝缘性能.  相似文献   

18.
磁流体微观结构的模拟与控制方法研究   总被引:3,自引:0,他引:3  
考虑磁流体中粒子受力及运动特性, 运用分子动力学模拟方法研究了磁流体的三维微观结构, 计算模拟了磁流体在有、无外加磁场作用下的微观结构, 分析了粒子体积份额、磁偶极子作用势以及外加磁场作用势对磁流体微观结构的影响. 结果表明在无外加磁场作用时, 磁流体中的磁性粒子呈现无序状态, 粒子会聚集成团; 在外加磁场条件下, 磁流体中的磁性粒子沿磁场方向取向形成链状结构, 且随着粒子体积份额的增加、磁偶极子作用势以及外加磁场作用势的增大, 链状结构更为明显.  相似文献   

19.
针对不同还原度球团矿、烧结矿及两者混合矿,通过单颗粒荷重软化实验,考察炉料软熔过程微观结构演变规律.结果表明,还原度决定炉料的软熔行为.低还原度下,熔化后炉料边缘形成渣相基体和蠕状金属铁结构,中心形成渣相基体和岛状浮氏体结构,炉料中心的低熔点渣相导致金属铁壳破裂导致渣相流出.高还原度下,炉料边缘和中心均形成渣相基体和蠕状金属铁相结构.渣铁分布状态更倾向于渣相被分割在金属铁相内,炉料中低熔点渣相数量减少使熔化温度升高,且渣相中低熔点的2FeO·SiO_2含量大幅降低,导致渣铁分离温度升高.球团矿和烧结矿界面间(Ca/Si)变化规律表明,还原度大幅提高使混合矿间交互作用开始温度升高,交互作用距离减小.  相似文献   

20.
纳米硅薄膜材料在场发射压力传感器研制中的应用   总被引:3,自引:0,他引:3  
设计研制了一种基于量子隧道效应机制的场发射压力传感器原型器件, 用CVD技术制备了粒径为3 ~ 9 nm, 厚度为30 ~ 40 nm的纳米硅薄膜, 并同时把这种低维材料引入到传感器阴极发射尖锥的制作, 形成纳米硅薄膜为实体的发射体结构. 用HREM及TED分析了纳米硅态的显微特性, 用场发射扫描电子显微镜SEM分析了发射体及阵列的微观结构, 用HP4145B晶体管参数测试仪考察了传感器件的场发射特性. 实验结果表明, 当外加电场为5.6×105 V/m时, 器件有效区域发射电流密度可达53.5 A/m2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号