首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Localization of cytoplasmic dynein to mitotic spindles and kinetochores   总被引:98,自引:0,他引:98  
E R Steuer  L Wordeman  T A Schroer  M P Sheetz 《Nature》1990,345(6272):266-268
What is the origin of the forces generating chromosome and spindle movements in mitosis? Both microtubule dynamics and microtubule-dependent motors have been proposed as the source of these motor forces. Cytoplasmic dynein and kinesin are two soluble proteins that power membranous organelle movements on microtubules. Kinesin directs movement of organelles to the 'plus' end of microtubules, and is found at the mitotic spindle in sea urchin embryos, but not in mammalian cells. Cytoplasmic dynein translocates organelles to the 'minus' end of microtubules, and is composed of two heavy chains and several light chains. We report here that monoclonal antibodies to two of these subunits and to another polypeptide that associates with dynein localize the protein to the mitotic spindle and to the kinetochores of isolated chromosomes, suggesting that cytoplasmic dynein is important in powering movements of the spindle and chromosomes in dividing cells.  相似文献   

2.
M S Chang  D G Lowe  M Lewis  R Hellmiss  E Chen  D V Goeddel 《Nature》1989,341(6237):68-72
Alpha atrial natriuretic peptide (alpha-ANP) and brain natriuretic peptide are homologous polypeptide hormones involved in the regulation of fluid and electrolyte homeostasis. These two natriuretic peptides apparently share common receptors and stimulate the intracellular production of cyclic GMP as a second messenger. Molecular cloning has defined two types of natriuretic peptide receptors: the ANP-C receptor of relative molecular mass (Mr) 60-70,000 (60-70 K), which is not coupled to cGMP production and may function in the clearance of ANP and the ANP-A receptor of Mr 120-140 K, which is a membrane form of guanylate cyclase in which ligand binding to the extracellular domain activates the cytoplasmic domain of the enzyme. Here we report the cloning and expression of a second human natriuretic peptide-receptor guanylate cyclase, the ANP-B receptor. The ANP-B receptor is preferentially activated by porcine brain natriuretic peptide rather than human alpha-ANP, whereas the ANP-A receptor responds similarly to both natriuretic peptides. These observations may have important implications for our understanding of the central and peripheral control of cardiovascular homeostasis.  相似文献   

3.
Identification of a secretory granule-binding protein as caldesmon   总被引:9,自引:0,他引:9  
R D Burgoyne  T R Cheek  K M Norman 《Nature》1986,319(6048):68-70
Stimulation of adrenal chromaffin cells results in a rise in the concentration of intracellular free calcium which initiates catecholamine secretion by exocytosis. An understanding of the molecular basis of exocytosis will require knowledge of the sites of action of calcium. A role for calmodulin has been implicated in secretion from chromaffin cells, and isolated granule membranes bind both calmodulin and a series of cytosolic proteins in a calcium-dependent fashion. Here, we demonstrate that one of the cytosolic granule-binding proteins with a relative molecular mass (Mr) of 70,000 (70K) is a form of the calmodulin-regulated actin-binding protein caldesmon, first isolated from smooth muscle. Cytoplasmic gels assembled from an adrenal medullary extract in the absence of Ca2+ contained actin and the 70K protein. The association of both of these proteins with the cytoplasmic gel was inhibited by a micromolar concentration of Ca2+. In addition, we have demonstrated that the 70K protein is localized at the periphery of chromaffin cells. These results are consistent with the notion that 70K protein (caldesmon) has a role in regulating the organization of actin filaments of the cell periphery during the secretory process.  相似文献   

4.
N Kartner  D Evernden-Porelle  G Bradley  V Ling 《Nature》1985,316(6031):820-823
One reason for the failure of chemotherapy in the treatment of advanced cancers may be the outgrowth of multidrug-resistant tumour cells. Multidrug resistance has been modelled in numerous mammalian cell lines in which the phenotype is characterized by a pleiotropic cross-resistance to unrelated drugs. In the study reported here, we have produced monoclonal antibodies whose binding to plasma membranes of different multidrug-resistant mammalian cells correlates with the degree of drug resistance. All these antibodies are specific for P-glycoprotein, a cell surface component of relative molecular mass (Mr) 170,000 (170K) that has been described previously, and are directed against three spatially distinct epitopes which define a conserved cytoplasmic domain in the C-terminal region of the P-glycoprotein polypeptide. The conserved nature of P-glycoprotein and its low-level expression is drug-sensitive cells suggest that it has an important function at the cell surface. The monoclonal antibodies against P-glycoprotein described here might serve as diagnostic reagents for clinically unresponsive tumours.  相似文献   

5.
6.
D Matesic  P A Liebman 《Nature》1987,326(6113):600-603
Light-modulated cytoplasmic cGMP simultaneously controls plasma membrane Na+ conductance in visual excitation and Ca2+ entry into rods by direct interaction with the cation channel. Cytoplasmic Ca2+ in turn may set operating points and contribute to the dynamics of several enzymes that regulate cGMP levels in the dark, recovery from excitation and receptor adaptation or down regulation. Similar channels may couple electrical activity to internal nucleotide metabolism in other tissues. We here report the identification, partial purification and behaviour after reconstitution of a protein of relative molecular mass 39,000 (Mr 39K) present in both disk and plasma membranes from bovine rod outer segments that mediates these cGMP-dependent cation fluxes. Its cGMP agonist specificity, kinetic cooperativity, ionic selectivity, membrane density and other features closely match the properties of the visual cGMP-dependent conductance inferred from electrophysiological measurements.  相似文献   

7.
Cytoplasmic dynein is localized to kinetochores during mitosis   总被引:90,自引:0,他引:90  
Recent evidence suggests that the force for poleward movement of chromosomes during mitosis is generated at or close to the kinetochores. Chromosome movement depends on motion relative to microtubules, but the identities of the motors remain uncertain. One candidate for a mitotic motor is dynein, a large multimeric enzyme which can move along microtubules toward their slow growing end. Dyneins were originally found in axonemes of cilia and flagella where they power microtubule sliding. Recently, cytoplasmic dyneins have also been found, and specific antibodies have been raised against them. The cellular localization of dynein has previously been studied with several antibodies raised against flagellar dynein, but the relevance of these data to the distribution of cytoplasmic dynein is not known. Antibodies raised against cytoplasmic dyneins have shown localization of dynein antigens to the mitotic spindles in Caenorhabditis elegans embryos (Lye et al., personal communication) and punctate cytoplasmic structures in Dictyostelium amoebae. Using antibodies that recognize subunits of cytoplasmic dyneins, we show here that during mitosis, cytoplasmic dynein antigens concentrate near the kinetochores, centrosomes and spindle fibres of HeLa and PtK1 cells, whereas at interphase they are distributed throughout the cytoplasm. This is consistent with the hypothesis that cytoplasmic dynein is a mitotic motor.  相似文献   

8.
M R Blatt  G Thiel  D R Trentham 《Nature》1990,346(6286):766-769
RECENT investigations suggest that cytoplasmic D-myo-inositol 1,4,5-trisphosphate (InsP3) functions as a second messenger in plants, as in animals, coupling environmental and other stimuli to intracellular Ca2+ release. Cytoplasmic levels of InsP3 and the turnover of several probable precursors in plants are affected by physiological stimuli--including light, osmotic stress and the phytohormone indoleacetic acid--and InsP3 activates Ca2+ channels and Ca2+ flux across plant vacuolar and microsomal membranes. Complementary data also link changes in cytoplasmic free Ca2+ to several physiological responses, notably in guard cells which regulate gas exchange through the stomatal pores of higher plant leaves. Recent evidence indicates that guard cell K+ channels and, hence, K+ flux for stomatal movements may be controlled by cytoplasmic Ca2+. So far, however, direct evidence of a role for InsP3 in signalling in plants has remained elusive. Here we report that InsP3 released from an inactive, photolabile precursor, the P5-1-(2-nitrophenyl)ethyl ester of InsP3 (caged InsP3) reversibly inactivates K+ channels thought to mediate K+ uptake by guard cells from Vicia faba L. while simultaneously activating an apparently time-independent, inward current to depolarize the membrane potential and promote K+ efflux through a second class of K+ channels. The data are consistent with a transient rise in cytoplasmic free Ca2+ and demonstrate that intact guard cells are competent to use InsP3 in signal cascades controlling ion flux through K+ channels.  相似文献   

9.
D L Ollis  C Kline  T A Steitz 《Nature》1985,313(6005):818-819
Escherichia coli contains three DNA polymerases that differ in their size, ability to interact with accessory proteins and biological function. Monomeric DNA polymerase I (Pol I) has a relative molecular mass (Mr) of 103,000 (103K) and is involved primarily in the repair of damaged DNA and the processing of Okazaki fragments; polymerase II is of Mr 120K, and polymerase III has a Mr of 140K, is responsible for the replication of the DNA chromosome and is just one of several proteins that are required for replication. DNA polymerases from bacteriophage as well as those of eukaryotic viral and cellular origin also differ with respect to their size and the number of associated proteins that are required for them to function in replication. However, the template-directed copying of DNA is identical in all cases. The crystal structure of the large proteolytic fragment of Pol I shows that it consists of two domains, the larger of which contains a deep crevice whose dimensions are such that it can bind duplex DNA. The T7 polymerase consists of two subunits, the 80K gene 5 protein and the host-encoded 12K thioredoxin of E. coli. We show here that there is an amino acid sequence homology between at least eight polypeptide segments that form the large cleft in the Klenow fragment and polypeptides in T7 DNA polymerase gene 5 protein, suggesting that this domain evolved from a common precursor. The parts of the Pol I and T7 DNA polymerase molecules that bind the DNA substrate appear to share common structural features, and these features may be shared by all of these varied DNA polymerases.  相似文献   

10.
A signal sequence receptor in the endoplasmic reticulum membrane   总被引:3,自引:0,他引:3  
Protein translocation across the endoplasmic reticulum (ER) membrane is triggered at several stages by information contained in the signal sequence. Initially, the signal sequence of a nascent secretory protein upon emergence from the ribosome is recognized by a polypeptide of relative molecular mass 54,000 (Mr54K) which is part of the signal recognition particle (SRP). Binding of SRP may induce a site-specific elongation arrest of translation in vitro. Attachment of the arrested translation complex to the ER membrane is mediated by the SRP-receptor (docking protein) and is accompanied by displacement of the SRP from both the ribosome and the signal sequence. We have investigated the fate of the signal sequence following the disengagement of SRP and its receptor by a crosslinking approach. We report here that the signal sequence of nascent preprolactin, after its release from the SRP, interacts with a newly discovered component, a signal sequence receptor (SSR), which is an integral, glycosylated protein of the rough ER membrane (Mr approximately 35K).  相似文献   

11.
Existence of distinct sodium channel messenger RNAs in rat brain   总被引:85,自引:0,他引:85  
M Noda  T Ikeda  T Kayano  H Suzuki  H Takeshima  M Kurasaki  H Takahashi  S Numa 《Nature》1986,320(6058):188-192
The sodium channel is a voltage-gated ionic channel essential for the generation of action potentials. It has been reported that the sodium channels purified from the electric organ of Electrophorus electricus (electric eel) and from chick cardiac muscle consist of a single polypeptide of relative molecular mass (Mr) approximately 260,000 (260K), whereas those purified from rat brain and skeletal muscle contain, in addition to the large polypeptide, two or three smaller polypeptides of Mr 37-45K. Recently, we have elucidated the primary structure of the Electrophorus sodium channel by cloning and sequencing the DNA complementary to its messenger RNA. Despite the apparent homogeneity of the purified sodium channel preparations, several types of tetrodotoxin (or saxitoxin) binding sites or sodium currents have been observed in many excitable membranes. The occurrence of distinguishable populations of sodium channels may be attributable to different states of the same channel protein or to distinct channel proteins. We have now isolated complementary DNA clones derived from two distinct rat brain mRNAs encoding sodium channel large polypeptides and present here the complete amino-acid sequences of the two polypeptides (designated sodium channels I and II), as deduced from the cDNA sequences. A partial DNA sequence complementary to a third homologous mRNA from rat brain has also been cloned.  相似文献   

12.
S T Brady 《Nature》1985,317(6032):73-75
Identification of the ATPase involved in fast axonal transport of membranous organelles has proven difficult. Myosin and dynein, other ATPases known to be involved in cell motility, have properties that are inconsistent with the established properties of fast axonal transport, an essential component of which is readily solubilized in physiological buffer conditions rather than being stably associated with either membranous organelles or cytoskeletal elements. Adenylyl imidodiphosphate (AMP-PNP), a nonhydrolysable analogue of ATP, is a potent inhibitor of fast axonal transport that results in a stable interaction of membranous organelles with microtubules. Here we report the identification and partial characterization of an ATPase activity from brain whose binding to microtubules is stabilized by AMP-PNP. This ATPase activity seems to be associated with a polypeptide of relative molecular mass (Mr) 130,000 that is highly enriched in microtubule pellets after incubation with AMP-PNP and a soluble fraction from chick brain. This novel ATPase fraction has the predicted characteristics of the motor involved in fast axonal transport. Common features between the ATPase and fast axonal transport include interaction with the cytoskeleton in the presence of AMP-PNP, ready extractability, no Ca2+ dependence and inhibition by EDTA.  相似文献   

13.
D Cantrell  A A Davies  M Londei  M Feldman  M J Crumpton 《Nature》1987,325(6104):540-542
In human T lymphocytes the antigen receptor (Ti) is associated non-covalently on the cell surface with the invariant T3 antigen which comprises 3 chains: two glycosylated polypeptides of relative molecular mass 26,000 (Mr 26K) and 21K (gamma and delta) and one non-N-glycosylated polypeptide of Mr 19K (epsilon). The proposed function of T3 is to transduce the activation signals delivered via the antigen receptor. Recently we have shown that phorbol esters, which stimulate protein kinase C, can induce phosphorylation of the gamma subunit of the T3 antigen. But the critical question is whether T3 phosphorylation occurs as a normal consequence of immune activation of T lymphocytes. In this respect, it has been shown that immune stimulation of murine T cells results in phosphorylation of Ti-associated polypeptides that may be the functional analogues of the human T3 antigen. We have therefore monitored T3 phosphorylation after exposure of human T cells to antigen or phytohaemagglutinin (PHA). The data show that both stimuli initiate phosphorylation of the gamma subunit of the T3 antigen which indicates that T3 phosphorylation is a physiological response to immune activation.  相似文献   

14.
The calcium-independent neural cell adhesion molecule N-CAM is expressed transiently during development in many tissues, including epithelia. The three naturally occurring principal isoforms of N-CAM differ in the way in which they associate with the membrane and in their cytoplasmic domains. These isoforms are generated by developmentally regulated alternative splicing of a single gene: the large cytoplasmic domain (ld) form (relative molecular mass 180,000 (Mr 180K] is specific for post-mitotic neurons; the 120K small cytoplasmic domain (ssd) and 140K small surface domain (sd) forms also occur on other cell types. One function of the different isoforms could be to specify cellular localization; for example, glycosyl phosphatidyl inositol (GPI)-membrane anchoring acts as a targeting signal for expression on the apical surface of polarized epithelial cells. Neurons and epithelial cells may use similar mechanisms for polarizing their plasma membrane proteins. We have therefore investigated the targeting of GPI-anchored (ssd N-CAM, 120K) and transmembrane forms of N-CAM (sd N-CAM, 140K; ld N-CAM, 180K) by comparing the expression of each after transfection of the appropriate complementary DNAs into polarized epithelial cells. We find that isoforms with alternative modes of membrane association are targeted to different surfaces of polarized epithelial cells: ssd N-CAM is expressed on the apical surface, whereas sd and ld N-CAM are expressed on the basolateral surface. These results suggest that the different isoforms of N-CAM determine their own diverse cellular destinations. They also support the hypothesis that the GPI anchor acts as an apical targeting signal in epithelia.  相似文献   

15.
Two homologous protein components of hepatic gap junctions   总被引:6,自引:0,他引:6  
Gap junctions consist of closely packed pairs of transmembrane channels, the connexons, through which materials of low relative molecular mass diffuse from the cell to neighbouring cells. In liver, connexons consist of six protein subunits which, until now, were believed to be identical. However, besides the major polypeptide of relative molecular mass (Mr) 28,000 (and see refs 4 and 6), a component of Mr 21,000 (21K) has been repeatedly observed in liver. The amino-terminal sequence (18 residues) of this less abundant protein shows that it is related to, but distinct from, the Mr 28K protein. Immuno-staining and immuno-precipitation show both proteins to be in the same gap junctional plaques. Thus, it seems that hepatic gap junction channels (and by extension possibly others) are composed of two (or more) homologous proteins.  相似文献   

16.
17.
Suppression of a myosin defect by a kinesin-related gene.   总被引:18,自引:0,他引:18  
S H Lillie  S S Brown 《Nature》1992,356(6367):358-361
Motor proteins in cells include myosin, which is actin-based, and kinesin, dynein and dynamin, which are microtubule-based. Several proteins have recently been identified that have amino-acid sequences with similarity to the motor domains of either myosin or kinesin, but are otherwise dissimilar. This has led to the suggestion that these may all be motor proteins, but that they are specialized for moving different cargos. Genetic analysis can address the question of the different functions of these new proteins. Studies of a temperature-sensitive mutation (myo2-66) in a gene of the myosin superfamily (MYO2) have implicated the Myo2 protein (Myo2p) in the process of polarized secretion in yeast (Saccharomyces cerevisiae). To understand more about the role of Myo2p, we have looked for 'multicopy suppressors' (heterologous genes that, when overexpressed, can correct the temperature sensitivity of the myo2-66 mutant). Here we report the identification of such a suppressor (SMY1) that (surprisingly) encodes a predicted polypeptide sharing sequence similarity with the motor portion of proteins in the kinesin superfamily.  相似文献   

18.
E Y Isacoff  Y N Jan  L Y Jan 《Nature》1991,353(6339):86-90
Inactivation of ion channels is important in the control of membrane excitability. For example, delayed-rectifier K+ channels, which regulate action potential repolarization, are inactivated only slowly, whereas A-type K+ channels, which affect action potential duration and firing frequency, have both fast and slow inactivation. Fast inactivation of Na+ and K+ channels may result from the blocking of the permeation pathway by a positively charged cytoplasmic gate such as the one encoded by the first 20 amino acids of the Shaker B (ShB) K+ channel. We report here that mutation of five highly conserved residues between the proposed membrane-spanning segments S4 and S5 (also termed H4) of ShB affects the stability of the inactivated state and alters channel conductance. One such mutation stabilizes the inactivated state of ShB as well as the inactivated state induced in the delayed-rectifier type K+ channel drk1 by the cytoplasmic application of the ShB N-terminal peptide. The S4-S5 loop, therefore, probably forms part of a receptor for the inactivation gate and lies near the channel's permeation pathway.  相似文献   

19.
Fission yeast p107wee1 mitotic inhibitor is a tyrosine/serine kinase.   总被引:65,自引:0,他引:65  
C Featherstone  P Russell 《Nature》1991,349(6312):808-811
The fission yeast wee1+ gene product is a dose-dependent, negative regulator of entry into mitosis. wee1+ encodes a protein of relative molecular mass 107,000 (Mr 107K), the C-terminal third of which has strong similarities with the serine/threonine protein kinase family. Here we report that p107wee1 immune complexes phosphorylate p107wee1 equally on serine and tyrosine residues, and also phosphorylate an exogenous substrate, angiotensin II, on tyrosine. Both kinase activities are attributable to p107wee1 because they are also observed when wee1+ is expressed in heterologous systems; both are abolished by a point mutation in the ATP-binding domain, and both behave like an asymmetric monomer of Mr114K on gel filtration and density-gradient centrifugation. Thus the wee1+ gene product is representative of a novel class of protein kinase that phosphorylates both serine and tyrosine residues.  相似文献   

20.
Mallik R  Carter BC  Lex SA  King SJ  Gross SP 《Nature》2004,427(6975):649-652
Cytoskeletal molecular motors belonging to the kinesin and dynein families transport cargos (for example, messenger RNA, endosomes, virus) on polymerized linear structures called microtubules in the cell. These 'nanomachines' use energy obtained from ATP hydrolysis to generate force, and move in a step-like manner on microtubules. Dynein has a complex and fundamentally different structure from other motor families. Thus, understanding dynein's force generation can yield new insight into the architecture and function of nanomachines. Here, we use an optical trap to quantify motion of polystyrene beads driven along microtubules by single cytoplasmic dynein motors. Under no load, dynein moves predominantly with a mixture of 24-nm and 32-nm steps. When moving against load applied by an optical trap, dynein can decrease step size to 8 nm and produce force up to 1.1 pN. This correlation between step size and force production is consistent with a molecular gear mechanism. The ability to take smaller but more powerful strokes under load--that is, to shift gears--depends on the availability of ATP. We propose a model whereby the gear is downshifted through load-induced binding of ATP at secondary sites in the dynein head.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号