首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The dusty cloud radiative forcing over the middle latitude regions of East Asia was estimated by using the 2-year (July 2002?June 2004) data of collocated clouds and the Earth’s radiant energy system (CERES) scanner and moderate resolution imaging spectroradiometer (MODIS) from Aqua Edition 1B SSF (single scanner footprint). The dusty cloud is defined as the cloud in dust storm environment or dust contaminated clouds. For clouds growing in the presence of dust, the instantaneous short-wave (SW) forcing at the top of the atmosphere (TOA) is about -275.7 W/m2 for cloud over dust (COD) region. The clouds developing in no-dust cloud (CLD) regions yield the most negative short-wave (SW) forcing (-311.0 W/m2), which is about 12.8% stronger than those in COD regions. For long-wave (LW) radiative forcing, the no-dust cloud (CLD) is around 102.8 W/m2, which is 20% less than the LW forcing from COD regions. The instantaneous TOA net radiative forcing for the CLD region is about -208.2 W/m2, which is 42.1% larger than the values of COD regions. The existence of dust aerosols under clouds significantly reduces the cooling effect of clouds.  相似文献   

2.
A satellite view of aerosols in the climate system   总被引:55,自引:0,他引:55  
Kaufman YJ  Tanré D  Boucher O 《Nature》2002,419(6903):215-223
Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.  相似文献   

3.
Price C 《Nature》2000,406(6793):290-293
Tropospheric water vapour is a key element of the Earth's climate, which has direct effects as a greenhouse gas, as well as indirect effects through interaction with clouds, aerosols and tropospheric chemistry. Small changes in upper-tropospheric water vapour have a much larger impact on the greenhouse effect than small changes in water vapour in the lower atmosphere, but whether this impact is a positive or negative feedback remains uncertain. The main challenge in addressing this question is the difficulty in monitoring upper-tropospheric water vapour globally over long timescales. Here I show that upper-tropospheric water-vapour variability and global lightning activity are closely linked, suggesting that upper-tropospheric water-vapour changes can be inferred from records of global lightning activity, readily obtained from observations at a single location on the Earth's surface. This correlation reflects the fact that continental deep-convective thunderstorms transport large amounts of water vapour into the upper troposphere and thereby dominate the variations of global upper-tropospheric water vapour while producing most of the lightning on Earth. As global lightning induces Schumann resonances, an electromagnetic phenomenon in the atmosphere that can be observed easily at low cost, monitoring of these resonances might provide a convenient method for tracking upper-tropospheric water-vapour variability and hence contribute to a better understanding of the processes affecting climate change.  相似文献   

4.
Brown ME  Bouchez AH  Griffith CA 《Nature》2002,420(6917):795-797
Atmospheric conditions on Saturn's largest satellite, Titan, allow the possibility that it could possess a methane condensation and precipitation cycle with many similarities to Earth's hydrological cycle. Detailed imaging studies of Titan have hitherto shown no direct evidence for tropospheric condensation clouds, although there has been indirect spectroscopic evidence for transient clouds. Here we report images and spectra of Titan that show clearly transient clouds, concentrated near the south pole, which is currently near the point of maximum solar heating. The discovery of these clouds demonstrates the existence of condensation and localized moist convection in Titan's atmosphere. Their location suggests that methane cloud formation is controlled seasonally by small variations in surface temperature, and that the clouds will move from the south to the north pole on a 15-year timescale.  相似文献   

5.
Hydrogen radicals are produced in the martian atmosphere by the photolysis of water vapour and subsequently initiate catalytic cycles that recycle carbon dioxide from its photolysis product carbon monoxide. These processes provide a qualitative explanation for the stability of the atmosphere of Mars, which contains 95 per cent carbon dioxide. Balancing carbon dioxide production and loss based on our current understanding of the gas-phase chemistry in the martian atmosphere has, however, proven to be difficult. Interactions between gaseous chemical species and ice cloud particles have been shown to be key factors in the loss of polar ozone observed in the Earth's stratosphere, and may significantly perturb the chemistry of the Earth's upper troposphere. Water-ice clouds are also commonly observed in the atmosphere of Mars and it has been suggested previously that heterogeneous chemistry could have an important impact on the composition of the martian atmosphere. Here we use a state-of-the-art general circulation model together with new observations of the martian ozone layer to show that model simulations that include chemical reactions occurring on ice clouds lead to much improved quantitative agreement with observed martian ozone levels in comparison with model simulations based on gas-phase chemistry alone. Ozone is readily destroyed by hydrogen radicals and is therefore a sensitive tracer of the chemistry that regulates the atmosphere of Mars. Our results suggest that heterogeneous chemistry on ice clouds plays an important role in controlling the stability and composition of the martian atmosphere.  相似文献   

6.
Ford EB  Seager S  Turner EL 《Nature》2001,412(6850):885-887
The detection of massive planets orbiting nearby stars has become almost routine, but current techniques are as yet unable to detect terrestrial planets with masses comparable to the Earth's. Future space-based observatories to detect Earth-like planets are being planned. Terrestrial planets orbiting in the habitable zones of stars-where planetary surface conditions are compatible with the presence of liquid water-are of enormous interest because they might have global environments similar to Earth's and even harbour life. The light scattered by such a planet will vary in intensity and colour as the planet rotates; the resulting light curve will contain information about the planet's surface and atmospheric properties. Here we report a model that predicts features that should be discernible in the light curve obtained by low-precision photometry. For extrasolar planets similar to Earth, we expect daily flux variations of up to hundreds of per cent, depending sensitively on ice and cloud cover as well as seasonal variations. This suggests that the meteorological variability, composition of the surface (for example, ocean versus land fraction) and rotation period of an Earth-like planet could be derived from photometric observations. Even signatures of Earth-like plant life could be constrained or possibly, with further study, even uniquely determined.  相似文献   

7.
Murray BJ  Knopf DA  Bertram AK 《Nature》2005,434(7030):202-205
An important mechanism for ice cloud formation in the Earth's atmosphere is homogeneous nucleation of ice in aqueous droplets, and this process is generally assumed to produce hexagonal ice. However, there are some reports that the metastable crystalline phase of ice, cubic ice, may form in the Earth's atmosphere. Here we present laboratory experiments demonstrating that cubic ice forms when micrometre-sized droplets of pure water and aqueous solutions freeze homogeneously at cooling rates approaching those found in the atmosphere. We find that the formation of cubic ice is dominant when droplets freeze at temperatures below 190 K, which is in the temperature range relevant for polar stratospheric clouds and clouds in the tropical tropopause region. These results, together with heat transfer calculations, suggest that cubic ice will form in the Earth's atmosphere. If there were a significant fraction of cubic ice in some cold clouds this could increase their water vapour pressure, and modify their microphysics and ice particle size distributions. Under specific conditions this may lead to enhanced dehydration of the tropopause region.  相似文献   

8.
Marine aerosol formation from biogenic iodine emissions   总被引:6,自引:0,他引:6  
The formation of marine aerosols and cloud condensation nuclei--from which marine clouds originate--depends ultimately on the availability of new, nanometre-scale particles in the marine boundary layer. Because marine aerosols and clouds scatter incoming radiation and contribute a cooling effect to the Earth's radiation budget, new particle production is important in climate regulation. It has been suggested that sulphuric acid derived from the oxidation of dimethyl sulphide is responsible for the production of marine aerosols and cloud condensation nuclei. It was accordingly proposed that algae producing dimethyl sulphide play a role in climate regulation, but this has been difficult to prove and, consequently, the processes controlling marine particle formation remains largely undetermined. Here, using smog chamber experiments under coastal atmospheric conditions, we demonstrate that new particles can form from condensable iodine-containing vapours, which are the photolysis products of biogenic iodocarbons emitted from marine algae. Moreover, we illustrate, using aerosol formation models, that concentrations of condensable iodine-containing vapours over the open ocean are sufficient to influence marine particle formation. We suggest therefore that marine iodocarbon emissions have a potentially significant effect on global radiative forcing.  相似文献   

9.
Models of Jupiter's formation and structure predict that its atmosphere is enriched in oxygen, relative to the Sun, and that consequently water clouds should be present globally near the 5-bar pressure level. Past attempts to confirm these predictions have led to contradictory results; in particular, the Galileo probe revealed a very dry atmosphere at the entry site, with no significant clouds at depths exceeding the 2-bar level. Although the entry site was known to be relatively cloud-free, the contrast between the observed local dryness and the expected global wetness was surprising. Here we analyse near-infrared (around 5 microm) observations of Jupiter, a spectral region that can reveal the water vapour abundance and vertical cloud structure in the troposphere. We find that humid and extremely dry regions exist in close proximity, and that some humid regions are spatially correlated with bright convective clouds extending from the deep water clouds to the visible atmosphere.  相似文献   

10.
在已有的云识别算法基础上, 利用微脉冲激光雷达后向散射信号区分云和气溶胶。按照云粒子的退偏振比, 区分冰云、水云、混合云以及水平导向的冰晶云。结合大气温度廓线, 对过冷水云层进行有效的识别。利用观测点上空持续一年的观测资料, 统计各种云出现的高度及比例的逐月变化, 结果显示, 过冷水云出现的时间占有云时间的9.84%, 对于0~−40℃的云层, 过冷水云出现的时间占11.99%。  相似文献   

11.
Su HT  Hsu RR  Chen AB  Wang YC  Hsiao WS  Lai WC  Lee LC  Sato M  Fukunishi H 《Nature》2003,423(6943):974-976
Transient luminous events in the atmosphere, such as lighting-induced sprites and upwardly discharging blue jets, were discovered recently in the region between thunderclouds and the ionosphere. In the conventional picture, the main components of Earth's global electric circuit include thunderstorms, the conducting ionosphere, the downward fair-weather currents and the conducting Earth. Thunderstorms serve as one of the generators that drive current upward from cloud tops to the ionosphere, where the electric potential is hundreds of kilovolts higher than Earth's surface. It has not been clear, however, whether all the important components of the global circuit have even been identified. Here we report observations of five gigantic jets that establish a direct link between a thundercloud (altitude approximately 16 km) and the ionosphere at 90 km elevation. Extremely-low-frequency radio waves in four events were detected, while no cloud-to-ground lightning was observed to trigger these events. Our result indicates that the extremely-low-frequency waves were generated by negative cloud-to-ionosphere discharges, which would reduce the electrical potential between ionosphere and ground. Therefore, the conventional picture of the global electric circuit needs to be modified to include the contributions of gigantic jets and possibly sprites.  相似文献   

12.
Rosenfeld D  Woodley WL 《Nature》2000,405(6785):440-442
In cirrus and orographic wave clouds, highly supercooled water has been observed in small quantities (less than 0.15 g m(-3)). This high degree of supercooling was attributed to the small droplet size and the lack of ice nuclei at the heights of these clouds. For deep convective clouds, which have much larger droplets near their tops and which take in aerosols from near the ground, no such measurements have hitherto been reported. However, satellite data suggest that highly supercooled water (down to -38 degrees C) frequently occurs in vigorous continental convective storms. Here we report in situ measurements in deep convective clouds from an aircraft, showing that most of the condensed water remains liquid down to -37.5 degrees C. The droplets reach a median volume diameter of 17 microm and amount to 1.8 gm(-3), one order of magnitude more than previously reported. At slightly colder temperatures only ice was found, suggesting homogeneous freezing. Because of the poor knowledge of mixed-phase cloud processes, the simulation of clouds using numerical models is difficult at present. Our observations will help to understand these cloud processes, such as rainfall, hail, and cloud electrification, together with their implications for the climate system.  相似文献   

13.
利用CloudSat和MODIS数据研究气溶胶对层积云的影响   总被引:2,自引:0,他引:2  
利用CloudSat的云雷达数据研究了太平洋东部副热带地区的层积云微物理特性。结果显示, CloudSat反演的云滴数浓度在垂直方向变化很小。结合CloudSat的云雷达数据和MODIS的气溶胶数据, 研究了气溶胶对层积云的微物理特性和液态水路径的影响。结果表明: 对于相同的液态水路径, 气溶胶增加可以使得云滴的尺度减小, 但总体上对云滴尺度的影响并不显著; 由于云中液态水路径本身变化极大, 导致气溶胶对液态水路径的影响很难和云中液态水路径本身的变化分离开。此外还发现: CloudSat反演的层积云液态水路径比MODIS反演的液态水路径偏高; 层积云内液态水路径的不均一性比环境气溶胶光学厚度的不均一性大。  相似文献   

14.
Satheesh SK  Ramanathan V 《Nature》2000,405(6782):60-63
The effect of radiative forcing by anthropogenic aerosols is one of the largest sources of uncertainty in climate predictions. Direct observations of the forcing are therefore needed, particularly for the poorly understood tropical aerosols. Here we present an observational method for quantifying aerosol forcing to within +/-5 per cent. We use calibrated satellite radiation measurements and five independent surface radiometers to quantify the aerosol forcing simultaneously at the Earth's surface and the top of the atmosphere over the tropical northern Indian Ocean. In winter, this region is covered by anthropogenic aerosols of sulphate, nitrate, organics, soot and fly ash from the south Asian continent. Accordingly, mean clear-sky solar radiative heating for the winters of 1998 and 1999 decreased at the ocean surface by 12 to 30 Wm(-2), but only by 4 to 10 Wm(-2) at the top of the atmosphere. This threefold difference (due largely to solar absorption by soot) and the large magnitude of the observed surface forcing both imply that tropical aerosols might slow down the hydrological cycle.  相似文献   

15.
Venus is completely covered by a thick cloud layer, of which the upper part is composed of sulphuric acid and some unknown aerosols. The cloud tops are in fast retrograde rotation (super-rotation), but the factors responsible for this super-rotation are unknown. Here we report observations of Venus with the Venus Monitoring Camera on board the Venus Express spacecraft. We investigate both global and small-scale properties of the clouds, their temporal and latitudinal variations, and derive wind velocities. The southern polar region is highly variable and can change dramatically on timescales as short as one day, perhaps arising from the injection of SO2 into the mesosphere. The convective cells in the vicinity of the subsolar point are much smaller than previously inferred, which we interpret as indicating that they are confined to the upper cloud layer, contrary to previous conclusions, but consistent with more recent study.  相似文献   

16.
The atmospheres of the gas giant planets (Jupiter and Saturn) contain jets that dominate the circulation at visible levels. The power source for these jets (solar radiation, internal heat, or both) and their vertical structure below the upper cloud are major open questions in the atmospheric circulation and meteorology of giant planets. Several observations and in situ measurements found intense winds at a depth of 24 bar, and have been interpreted as supporting an internal heat source. This issue remains controversial, in part because of effects from the local meteorology. Here we report observations and modelling of two plumes in Jupiter's atmosphere that erupted at the same latitude as the strongest jet (23 degrees N). The plumes reached a height of 30 km above the surrounding clouds, moved faster than any other feature (169 m s(-1)), and left in their wake a turbulent planetary-scale disturbance containing red aerosols. On the basis of dynamical modelling, we conclude that the data are consistent only with a wind that extends well below the level where solar radiation is deposited.  相似文献   

17.
An intense stratospheric jet on Jupiter   总被引:1,自引:0,他引:1  
The Earth's equatorial stratosphere shows oscillations in which the east-west winds reverse direction and the temperatures change cyclically with a period of about two years. This phenomenon, called the quasi-biennial oscillation, also affects the dynamics of the mid- and high-latitude stratosphere and weather in the lower atmosphere. Ground-based observations have suggested that similar temperature oscillations (with a 4-5-yr cycle) occur on Jupiter, but these data suffer from poor vertical resolution and Jupiter's stratospheric wind velocities have not yet been determined. Here we report maps of temperatures and winds with high spatial resolution, obtained from spacecraft measurements of infrared spectra of Jupiter's stratosphere. We find an intense, high-altitude equatorial jet with a speed of approximately 140 m s(-1), whose spatial structure resembles that of a quasi-quadrennial oscillation. Wave activity in the stratosphere also appears analogous to that occurring on Earth. A strong interaction between Jupiter and its plasma environment produces hot spots in its upper atmosphere and stratosphere near its poles, and the temperature maps define the penetration of the hot spots into the stratosphere.  相似文献   

18.
Observations of oscillations of temperature and wind in planetary atmospheres provide a means of generalizing models for atmospheric dynamics in a diverse set of planets in the Solar System and elsewhere. An equatorial oscillation similar to one in the Earth's atmosphere has been discovered in Jupiter. Here we report the existence of similar oscillations in Saturn's atmosphere, from an analysis of over two decades of spatially resolved observations of its 7.8-microm methane and 12.2-microm ethane stratospheric emissions, where we compare zonal-mean stratospheric brightness temperatures at planetographic latitudes of 3.6 degrees and 15.5 degrees in both the northern and the southern hemispheres. These results support the interpretation of vertical and meridional variability of temperatures in Saturn's stratosphere as a manifestation of a wave phenomenon similar to that on the Earth and in Jupiter. The period of this oscillation is 14.8 +/- 1.2 terrestrial years, roughly half of Saturn's year, suggesting the influence of seasonal forcing, as is the case with the Earth's semi-annual oscillation.  相似文献   

19.
Accretion of the Earth and segregation of its core   总被引:1,自引:0,他引:1  
Wood BJ  Walter MJ  Wade J 《Nature》2006,441(7095):825-833
The Earth took 30-40 million years to accrete from smaller 'planetesimals'. Many of these planetesimals had metallic iron cores and during growth of the Earth this metal re-equilibrated with the Earth's silicate mantle, extracting siderophile ('iron-loving') elements into the Earth's iron-rich core. The current composition of the mantle indicates that much of the re-equilibration took place in a deep (> 400 km) molten silicate layer, or 'magma ocean', and that conditions became more oxidizing with time as the Earth grew. The high-pressure nature of the core-forming process led to the Earth's core being richer in low-atomic-number elements, notably silicon and possibly oxygen, than the cores of the smaller planetesimal building blocks.  相似文献   

20.
Huang H  Fei Y  Cai L  Jing F  Hu X  Xie H  Zhang L  Gong Z 《Nature》2011,479(7374):513-516
On the basis of geophysical observations, cosmochemical constraints, and high-pressure experimental data, the Earth's liquid outer core consists of mainly liquid iron alloyed with about ten per cent (by weight) of light elements. Although the concentrations of the light elements are small, they nevertheless affect the Earth's core: its rate of cooling, the growth of the inner core, the dynamics of core convection, and the evolution of the geodynamo. Several light elements-including sulphur, oxygen, silicon, carbon and hydrogen-have been suggested, but the precise identity of the light elements in the Earth's core is still unclear. Oxygen has been proposed as a major light element in the core on the basis of cosmochemical arguments and chemical reactions during accretion. Its presence in the core has direct implications for Earth accretion conditions of oxidation state, pressure and temperature. Here we report new shockwave data in the Fe-S-O system that are directly applicable to the outer core. The data include both density and sound velocity measurements, which we compare with the observed density and velocity profiles of the liquid outer core. The results show that we can rule out oxygen as a major light element in the liquid outer core because adding oxygen into liquid iron would not reproduce simultaneously the observed density and sound velocity profiles of the outer core. An oxygen-depleted core would imply a more reduced environment during early Earth accretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号