首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new approach to protein fold recognition.   总被引:80,自引:0,他引:80  
D T Jones  W R Taylor  J M Thornton 《Nature》1992,358(6381):86-89
The prediction of protein tertiary structure from sequence using molecular energy calculations has not yet been successful; an alternative strategy of recognizing known motifs or folds in sequences looks more promising. We present here a new approach to fold recognition, whereby sequences are fitted directly onto the backbone coordinates of known protein structures. Our method for protein fold recognition involves automatic modelling of protein structures using a given sequence, and is based on the frameworks of known protein folds. The plausibility of each model, and hence the degree of compatibility between the sequence and the proposed structure, is evaluated by means of a set of empirical potentials derived from proteins of known structure. The novel aspect of our approach is that the matching of sequences to backbone coordinates is performed in full three-dimensional space, incorporating specific pair interactions explicitly.  相似文献   

2.
A surprising simplicity to protein folding   总被引:28,自引:0,他引:28  
Baker D 《Nature》2000,405(6782):39-42
The polypeptide chains that make up proteins have thousands of atoms and hence millions of possible inter-atomic interactions. It might be supposed that the resulting complexity would make prediction of protein structure and protein-folding mechanisms nearly impossible. But the fundamental physics underlying folding may be much simpler than this complexity would lead us to expect folding rates and mechanisms appear to be largely determined by the topology of the native (folded) state, and new methods have shown great promise in predicting protein-folding mechanisms and the three-dimensional structures of proteins.  相似文献   

3.
Jiang W  Baker ML  Jakana J  Weigele PR  King J  Chiu W 《Nature》2008,451(7182):1130-1134
A half-century after the determination of the first three-dimensional crystal structure of a protein, more than 40,000 structures ranging from single polypeptides to large assemblies have been reported. The challenge for crystallographers, however, remains the growing of a diffracting crystal. Here we report the 4.5-A resolution structure of a 22-MDa macromolecular assembly, the capsid of the infectious epsilon15 (epsilon15) particle, by single-particle electron cryomicroscopy. From this density map we constructed a complete backbone trace of its major capsid protein, gene product 7 (gp7). The structure reveals a similar protein architecture to that of other tailed double-stranded DNA viruses, even in the absence of detectable sequence similarity. However, the connectivity of the secondary structure elements (topology) in gp7 is unique. Protruding densities are observed around the two-fold axes that cannot be accounted for by gp7. A subsequent proteomic analysis of the whole virus identifies these densities as gp10, a 12-kDa protein. Its structure, location and high binding affinity to the capsid indicate that the gp10 dimer functions as a molecular staple between neighbouring capsomeres to ensure the particle's stability. Beyond epsilon15, this method potentially offers a new approach for modelling the backbone conformations of the protein subunits in other macromolecular assemblies at near-native solution states.  相似文献   

4.
A peptide model of a protein folding intermediate   总被引:21,自引:0,他引:21  
T G Oas  P S Kim 《Nature》1988,336(6194):42-48
It is difficult to determine the structures of protein folding intermediates because folding is a highly cooperative process. A disulphide-bonded peptide pair, designed to mimic the first crucial intermediate in the folding of bovine pancreatic trypsin inhibitor, contains secondary and tertiary structure similar to that found in the native protein. Peptide models like this circumvent the problem of cooperativity and permit characterization of structures of folding intermediates.  相似文献   

5.
Backbone hydrogen bonds (H-bonds) are prominent features of protein structures; however, their role in protein folding remains controversial because they cannot be selectively perturbed by traditional methods of protein mutagenesis. Here we have assessed the contribution of backbone H-bonds to the folding kinetics and thermodynamics of the PIN WW domain, a small beta-sheet protein, by individually replacing its backbone amides with esters. Amide-to-ester mutations site-specifically perturb backbone H-bonds in two ways: a H-bond donor is eliminated by replacing an amide NH with an ester oxygen, and a H-bond acceptor is weakened by replacing an amide carbonyl with an ester carbonyl. We perturbed the 11 backbone H-bonds of the PIN WW domain by synthesizing 19 amide-to-ester mutants. Thermodynamic studies on these variants show that the protein is most destabilized when H-bonds that are enveloped by a hydrophobic cluster are perturbed. Kinetic studies indicate that native-like secondary structure forms in one of the protein's loops in the folding transition state, but the backbone is less ordered elsewhere in the sequence. Collectively, our results provide an unusually detailed picture of the folding of a beta-sheet protein.  相似文献   

6.
K Oh  K S Jeong  J S Moore 《Nature》2001,414(6866):889-893
The biological function of biomacromolecules such as DNA and enzymes depends on their ability to perform and control molecular association, catalysis, self-replication or other chemical processes. In the case of proteins in particular, the dependence of these functions on the three-dimensional protein conformation is long known and has inspired the development of synthetic oligomers and polymers with the capacity to fold in a controlled manner, but it remains challenging to design these so-called 'foldamers' so that they are capable of inducing or controlling chemical processes and interactions. Here we show that the stability gained from folding can be used to control the synthesis of oligomers from short chain segments reversibly ligated through an imine metathesis reaction. That is, folding shifts the ligation equilibrium in favour of conformationally ordered sequences, so that oligomers having the most stable solution structures form preferentially. Crystallization has previously been used to shift an equilibrium in order to indirectly influence the synthesis of small molecules, but the present approach to selectively prepare macromolecules with stable conformations directly connects folding and synthesis, emphasizing molecular function rather than structure in polymer synthesis.  相似文献   

7.
Bowie JU 《Nature》2005,438(7068):581-589
One of the great challenges for molecular biologists is to learn how a protein sequence defines its three-dimensional structure. For many years, the problem was even more difficult for membrane proteins because so little was known about what they looked like. The situation has improved markedly in recent years, and we now know over 90 unique structures. Our enhanced view of the structure universe, combined with an increasingly quantitative understanding of fold determination, engenders optimism that a solution to the folding problem for membrane proteins can be achieved.  相似文献   

8.
Phasing of protein-induced DNA bends in a recombination complex   总被引:26,自引:0,他引:26  
U K Snyder  J F Thompson  A Landy 《Nature》1989,341(6239):255-257
  相似文献   

9.
10.
The molten globule protein conformation probed by disulphide bonds   总被引:8,自引:0,他引:8  
J J Ewbank  T E Creighton 《Nature》1991,350(6318):518-520
The molten globule is a compact protein conformation that has a secondary structure content like that of the native protein, but poorly defined tertiary structure. It is a stable state for a few proteins under particular conditions and could be a ubiquitous kinetic intermediate in protein folding. The extent to which native interactions, above the level of the secondary structure, are preserved in this conformation is not so far known. Here we report that alpha-lactalbumin can adopt a molten globule conformation when one of its four disulphide bonds is reduced. In this state, the three other disulphide bonds rearrange spontaneously, at the same rate as when the protein is fully unfolded, to a number of different disulphide bond isomers that tend to maintain the molten globule conformation. That the molten globule state is compatible with a variety of disulphide bond pairings suggests that it is unlikely to be stabilized by many specific tertiary interactions.  相似文献   

11.
Ferguson N  Sharpe TD  Johnson CM  Schartau PJ  Fersht AR 《Nature》2007,445(7129):E14-5; discussion E17-8
There is controversy as to whether homologues from the peripheral subunit binding domain family of small proteins fold 'downhill' (that is, non-cooperatively, in the absence of free-energy barriers between conformations) and whether they modulate their size for biological function. Sadqi et al. claim that Naf-BBL--a naphthylalanine-labelled, truncated version of this domain--folds in this way, on the grounds that they recorded a wide spread of melting temperatures of individual atoms measured by proton nuclear magnetic resonance (NMR) during their thermal denaturation. But their data are not of adequate quality to distinguish, within experimental error, between downhill folding and folding with a cooperative transition. Accordingly, their results offer no compelling evidence that Naf-BBL folds downhill, particularly as non-truncated, unmodified peripheral subunit binding domains seem to fold cooperatively.  相似文献   

12.
Parisien M  Major F 《Nature》2008,452(7183):51-55
The classical RNA secondary structure model considers A.U and G.C Watson-Crick as well as G.U wobble base pairs. Here we substitute it for a new one, in which sets of nucleotide cyclic motifs define RNA structures. This model allows us to unify all base pairing energetic contributions in an effective scoring function to tackle the problem of RNA folding. We show how pipelining two computer algorithms based on nucleotide cyclic motifs, MC-Fold and MC-Sym, reproduces a series of experimentally determined RNA three-dimensional structures from the sequence. This demonstrates how crucial the consideration of all base-pairing interactions is in filling the gap between sequence and structure. We use the pipeline to define rules of precursor microRNA folding in double helices, despite the presence of a number of presumed mismatches and bulges, and to propose a new model of the human immunodeficiency virus-1 -1 frame-shifting element.  相似文献   

13.
J B Udgaonkar  R L Baldwin 《Nature》1988,335(6192):694-699
The presence of an early intermediate on the folding pathway of ribonuclease A has been demonstrated by a study of the exchange reaction between the backbone amide protons in the folding protein and solvent protons using rapid mixing techniques. A structural analysis of the intermediate by two-dimensional 1H-NMR is consistent with the framework model of protein folding in which stable secondary structure first forms the framework necessary for the subsequent formation of the complete tertiary structure.  相似文献   

14.
Vendruscolo M  Paci E  Dobson CM  Karplus M 《Nature》2001,409(6820):641-645
Determining how a protein folds is a central problem in structural biology. The rate of folding of many proteins is determined by the transition state, so that a knowledge of its structure is essential for understanding the protein folding reaction. Here we use mutation measurements--which determine the role of individual residues in stabilizing the transition state--as restraints in a Monte Carlo sampling procedure to determine the ensemble of structures that make up the transition state. We apply this approach to the experimental data for the 98-residue protein acylphosphatase, and obtain a transition-state ensemble with the native-state topology and an average root-mean-square deviation of 6 A from the native structure. Although about 20 residues with small positional fluctuations form the structural core of this transition state, the native-like contact network of only three of these residues is sufficient to determine the overall fold of the protein. This result reveals how a nucleation mechanism involving a small number of key residues can lead to folding of a polypeptide chain to its unique native-state structure.  相似文献   

15.
Respective roles of short-and long-range interactions in protein folding   总被引:2,自引:0,他引:2  
A new method was presented to discuss the respective roles of short- and long-range interactions in protein folding. It‘s based on an off-lattice model, which is also being called as toy model. Simulated annealing algorithm was used to search its native conformation. When it is applied to analysis proteins lagt and laho, we find that helical segment catmot fold into native conformation without the influence of long-range interactions. That‘s to say that long-range interactions are the main determinants in protein folding.  相似文献   

16.
Religa TL  Markson JS  Mayor U  Freund SM  Fersht AR 《Nature》2005,437(7061):1053-1056
The most controversial area in protein folding concerns its earliest stages. Questions such as whether there are genuine folding intermediates, and whether the events at the earliest stages are just rearrangements of the denatured state or progress from populated transition states, remain unresolved. The problem is that there is a lack of experimental high-resolution structural information about early folding intermediates and denatured states under conditions that favour folding because competent states spontaneously fold rapidly. Here we have solved directly the solution structure of a true denatured state by nuclear magnetic resonance under conditions that would normally favour folding, and directly studied its equilibrium and kinetic behaviour. We engineered a mutant of Drosophila melanogaster Engrailed homeodomain that folds and unfolds reversibly just by changing ionic strength. At high ionic strength, the mutant L16A is an ultra-fast folding native protein, just like the wild-type protein; however, at physiological ionic strength it is denatured. The denatured state is a well-ordered folding intermediate, poised to fold by docking helices and breaking some non-native interactions. It unfolds relatively progressively with increasingly denaturing conditions, and so superficially resembles a denatured state with properties that vary with conditions. Such ill-defined unfolding is a common feature of early folding intermediate states and accounts for why there are so many controversies about intermediates versus compact denatured states in protein folding.  相似文献   

17.
Molecular chaperones in protein folding and proteostasis   总被引:4,自引:0,他引:4  
Hartl FU  Bracher A  Hayer-Hartl M 《Nature》2011,475(7356):324-332
Most proteins must fold into defined three-dimensional structures to gain functional activity. But in the cellular environment, newly synthesized proteins are at great risk of aberrant folding and aggregation, potentially forming toxic species. To avoid these dangers, cells invest in a complex network of molecular chaperones, which use ingenious mechanisms to prevent aggregation and promote efficient folding. Because protein molecules are highly dynamic, constant chaperone surveillance is required to ensure protein homeostasis (proteostasis). Recent advances suggest that an age-related decline in proteostasis capacity allows the manifestation of various protein-aggregation diseases, including Alzheimer's disease and Parkinson's disease. Interventions in these and numerous other pathological states may spring from a detailed understanding of the pathways underlying proteome maintenance.  相似文献   

18.
Ferbitz L  Maier T  Patzelt H  Bukau B  Deuerling E  Ban N 《Nature》2004,431(7008):590-596
During protein biosynthesis, nascent polypeptide chains that emerge from the ribosomal exit tunnel encounter ribosome-associated chaperones, which assist their folding to the native state. Here we present a 2.7 A crystal structure of Escherichia coli trigger factor, the best-characterized chaperone of this type, together with the structure of its ribosome-binding domain in complex with the Haloarcula marismortui large ribosomal subunit. Trigger factor adopts a unique conformation resembling a crouching dragon with separated domains forming the amino-terminal ribosome-binding 'tail', the peptidyl-prolyl isomerase 'head', the carboxy-terminal 'arms' and connecting regions building up the 'back'. From its attachment point on the ribosome, trigger factor projects the extended domains over the exit of the ribosomal tunnel, creating a protected folding space where nascent polypeptides may be shielded from proteases and aggregation. This study sheds new light on our understanding of co-translational protein folding, and suggests an unexpected mechanism of action for ribosome-associated chaperones.  相似文献   

19.
Koide S  Huang X  Link K  Koide A  Bu Z  Engelman DM 《Nature》2000,403(6768):456-460
The hydrophobic effect is the main thermodynamic driving force in the folding of water-soluble proteins. Exclusion of nonpolar moieties from aqueous solvent results in the formation of a hydrophobic core in a protein, which has been generally considered essential for specifying and stabilizing the folded structures of proteins. Outer surface protein A (OspA) from Borrelia burgdorferi contains a three-stranded beta-sheet segment which connects two globular domains. Although this single-layer beta-sheet segment is exposed to solvent on both faces and thus does not contain a hydrophobic core, the segment has a high conformational stability. Here we report the engineering of OspA variants that contain larger single-layer beta-sheets (comprising five and seven beta-strands) by duplicating a beta-hairpin unit within the beta-sheet. Nuclear magnetic resonance and small-angle X-ray scattering analyses reveal that these extended single-layer beta-sheets are formed as designed, and amide hydrogen-deuterium exchange and chemical denaturation show that they are stable. Thus, interactions within the beta-hairpin unit and those between adjacent units, which do not involve the formation of a hydrophobic core, are sufficient to specify and stabilize the single-layer beta-sheet structure. Our results provide an expanded view of protein folding, misfolding and design.  相似文献   

20.
Prediction of the tertiary structures of proteins may be carried out using a knowledge-based approach. This depends on identification of analogies in secondary structures, motifs, domains or ligand interactions between a protein to be modelled and those of known three-dimensional structures. Such techniques are of value in prediction of receptor structures to aid the design of drugs, herbicides or pesticides, antigens in vaccine design, and novel molecules in protein engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号