首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The function of apolipoproteins L   总被引:1,自引:0,他引:1  
The function of the proteins of the apolipoprotein L (apoL) family is largely unknown. These proteins are classically thought to be involved in lipid transport and metabolism, mainly due to the initial discovery that a secreted member of the family, apoL-I, is associated with high-density lipoprotein particles. However, the other members of the family are believed to be intracellular. The recent unravelling of the mechanism by which apoL-I kills African trypanosomes, as well as the increasing evidence for modulation of apoL expression in various pathological processes, provides new insights about the functions of these proteins. ApoLs share structural and functional similarities with proteins of the Bcl-2 family. Based on the activity of apoL-I in trypanosomes and the comparison with Bcl-2 proteins, we propose that apoLs could function as ion channels of intracellular membranes and be involved in mechanisms triggering programmed cell death. Received 28 February 2006; received after revision 18 May 2006; accepted 2 June 2006  相似文献   

2.
Summary The terminally unsaturated hydrocarbons of the defensive secretion ofTribolium confusum are biosynthesized from fatty acids by oxidative decarboxylation. The process involves an enantiospecific cleavage of the C–H bond of thepro-(S) C(3)–H atom and simultaneous decarboxylation of the acid into an 1-alkene and carbon dioxide via ananti-periplanar transition state geometry (anti-elimination). The stereochemistry of this biotranformation is identical in all respects with the same reaction in higher plants. The mechanism seems to be of general importance for the biosynthesis of many vinylic substructures of natural products from oxygen-containing precursors.  相似文献   

3.
Legionella (L.) pneumophila, the causative agent of Legionnaires disease, is an intracellular pathogen of alveolar macrophages that resides in a compartment displaying features of endoplasmatic reticulum (ER). In this study, we show that intracellular multiplication of L. pneumophila results in a remarkable decrease in MHC class I expression by the infected monocytes. During intracellular multiplication, L. pneumophila absorbs ER-resident chaperons such as calnexin and BiP, molecules that are required for the correct formation of the MHC class I complex. Due to reduced MHC class I expression, stimulation of allogeneic blood mononuclear cells was severely inhibited by infected host cells but cytotoxicity of autologous natural killer cells against Legionella-infected monocytes was not enhanced. Thus, reduced expression of MHC class I in infected monocytes may resemble a new immune escape mechanism induced by L. pneumophila.Received 22 November 2004; received after revision 27 December 2004; accepted 5 January 2005  相似文献   

4.
Summary Glutamine synthetase I was purified fromRhizobium sp. UMKL 20 following polyethylene glycol precipitation. The enzyme had a subunit molecular weight of 58 kd. Apparent Km values for ammonia and glutamate were 5.6 and 15.2 mM, respectively. Glutamine synthetase I activity was inhibited by several end products of glutamine metabolism. The purified enzyme was highly adenylylated (E n =8.5).Acknowledgment. I would like to thank Mr J. C. Lai for technical assistance. This work was carried out with the support of Vote F 153/79 from the University of Malaya.  相似文献   

5.
Proteins of the developing enamel matrix include amelogenin, ameloblastin and enamelin. Of these three proteins amelogenin predominates. Protein-protein interactions are likely to occur at the ameloblast Tomes’ processes between membrane-bound proteins and secreted enamel matrix proteins. Such protein-protein interactions could be associated with cell signaling or endocytosis. CD63 and Lamp1 are ubiquitously expressed, are lysosomal integral membrane proteins, and localize to the plasma membrane. CD63 and Lamp1 interact with amelogenin in vitro. In this study our objective was to study the molecular events of intercellular trafficking of an exogenous source of amelogenin, and related this movement to the spatiotemporal expression of CD63 and Lamp1 using various cell lineages. Exogenously added amelogenin moves rapidly into the cell into established Lamp1-positive vesicles that subsequently localize to the perinuclear region. These data indicate a possible mechanism by which amelogenin, or degraded amelogenin peptides, are removed from the extracellular matrix during enamel formation and maturation. Received 27 September 2006; received after revision 24 November 2006; accepted 5 December 2006  相似文献   

6.
Decoding the Hedgehog signal in animal development   总被引:4,自引:0,他引:4  
The Hedgehog (Hh) family of secreted proteins plays essential roles in a myriad of developmental processes via a complex signaling cascade conserved in species ranging from insects to mammals. In many developmental contexts, Hh acts as long-range morphogen to control distinct cellular outcomes as a function of its concentration. Here we review the current understanding of the Hh signaling mechanisms that govern the establishment of the Hh gradient and the transduction of the Hh signal with an emphasis on the intracellular signaling cascade from the receptor to the nuclear effector. We discuss how graded Hh signals are transduced to govern distinct developmental outcomes. Received 28 October 2005; received after revision 6 February 2006; accepted 15 February 2006  相似文献   

7.
The elucidation of assembly pathways of multi-subunit membrane proteins is of growing interest in structural biology. In this study, we provide an analysis of the assembly of the asymmetrically oriented PsaC subunit on the pseudo C2-symmetric Photosystem I core. Based on a comparison of the differences in the NMR solution structure of unbound PsaC with that of the X-ray crystal structure of bound PsaC, and on a detailed analysis of the PsaC binding site surrounding the FX iron-sulfur cluster, two models can be envisioned for what are likely the last steps in the assembly of Photosystem I. Here, we dissect both models and attempt to address heretofore unrecognized issues by proposing a mechanism that includes a thermodynamic perspective. Experimental strategies to verify the models are proposed. In closing, the evolutionary aspects of the assembly process will be considered, with special reference to the structural arrangement of the PsaC binding surface. Received 22 October 2008; received after revision 17 November 2008; accepted 05 December 2008  相似文献   

8.
The 129 mouse strain develops congenital testicular germ cell tumors (TGCTs) at a low frequency. TGCTs in mice resemble the testicular tumors (teratomas) that occur in human infants. The genes that cause these tumors in 129 have not been identified. The defect at the Ter locus increases TGCT incidence such that 94% of 129-Ter/Ter males develop TGCTs. The primary effect of the Ter mutation is progressive loss of primordial germ cells (PGCs) during embryonic development. This results in sterility in adult Ter/Ter mice on all mouse strain backgrounds. However, on the 129 background, Ter causes tumor development in addition to sterility. Therefore, Ter acts as a modifier of 129-derived TGCT susceptibility genes. Ter was identified to be a mutation that inactivates the Dead-end1 (Dnd1) gene. In this perspective, I discuss the possible areas of future investigations to elucidate the mechanism of TGCT development due to Dnd1 inactivation. Received 29 September 2006; received after revision 29 January 2007; accepted 19 February 2007  相似文献   

9.
Summary Fluid-phase pinocytosis kinetics and lysosomal enzyme secretion parameters were measured inDictyostelium discoideum amoebae constructed from strain AX3 by transformation with a multicopy plasmid carrying either a normalras gene (ras-Gly12), a mutatedras gene (ras-Thr12) or by the vector carrying the geneticin resistance gene only (pDNEO2). It was found that the pinocytosis rate and extent as well as the lysosomal enzyme secretion were slightly different in the three strains. These changes, however, were related to minor modifications of the cellular volumes. The overall concentration of inositol hexakisphosphate was similar in the three strains.This work was supported in part by a grant from the Ligue Nationale Française contre le Cancer (no 880258) to MS, and by a grant from the Fonds National Suisse de la Recherche Scientifique (No. 3.623-087) to CR.  相似文献   

10.
The facultative intracellular pathogen Salmonella enterica resides in a special membrane compartment of the host cell and modifies its host to achieve intracellular survival and proliferation. The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI2) has a central role in the interference of intracellular Salmonella with host cell functions. SPI2 function affects antimicrobial defense mechanisms of the host, intracellular transport processes, integrity and function of the cytoskeleton and host cell death. These modifications are mediated by translocation of a large number of effector proteins by the SPI2 system. In this review, we summarize recent work on the cellular phenotypes related to SPI2 function and contribution of SPI2 effector proteins to these manipulations. These studies reveal a complex set of pathogenic interferences between intracellular Salmonella and its host cells.Received 11 June 2004; received after revision 8 July 2004; accepted 12 July 2004  相似文献   

11.
12.
The typically distinct phospholipid composition of the two leaflets of a membrane bilayer is generated and maintained by bi-directional transport (flip-flop) of lipids between the leaflets. Specific membrane proteins, termed lipid flippases, play an essential role in this transport process. Energy-independent flippases allow common phospholipids to equilibrate rapidly between the two monolayers and also play a role in the biosynthesis of a variety of glycoconjugates such as glycosphingolipids, N-glycoproteins, and glycosylphosphatidylinositol (GPI)-anchored proteins. ATP-dependent flippases, including members of a conserved subfamily of P-type ATPases and ATP-binding cassette transporters, mediate the net transfer of specific phospholipids to one leaflet of a membrane and are involved in the creation and maintenance of transbilayer lipid asymmetry of membranes such as the plasma membrane of eukaryotes. Energy-dependent flippases also play a role in the biosynthesis of glycoconjugates such as bacterial lipopolysaccharide. This review summarizes recent progress on the identification and characterization of the various flippases and the demonstration of their biological functions. Received 12 April 2006; received after revision 22 June 2006; accepted 30 August 2006  相似文献   

13.
Autoimmune T cells have been viewed for decades as an outcome of immune system malfunction, and specifically as a failure to distinguish between components of self and non-self. The need for discrimination between self and non-self as a way to avoid autoimmunity has been repeatedly debated over the years. Recent studies suggest that autoimmunity, at least in the nervous system, is the bodys defense mechanism against deviations from the normal. The ability to harness neuroprotective autoimmunity upon need is evidently allowed by naturally occurring CD4+CD25+ regulatory T cells, which are themselves controlled by brain-derived compounds. These findings challenge widely accepted concepts of the need for discrimination between self and non-self, as they suggest that while such discrimination is indeed required, it is needed not as a way to avoid an anti-self response but to ensure its proper regulation. Whereas a response to non-self can be self-limited by a decreased presence of the relevant antigen, the response to self needs a mechanism for strict control, such as that provided by the naturally occurring regulatory T cells.Received 8 June 2004; accepted 6 July 2004  相似文献   

14.
Cell surface heparan sulfate proteoglycans and lipoprotein metabolism   总被引:2,自引:0,他引:2  
Cell surface heparan sulfate proteoglycans are involved in several aspects of the lipoprotein metabolism. Most of the biological activities of these proteoglycans are mediated via interactions of their heparan sulfate moieties with various protein ligands, including lipoproteins and lipases. The binding of lipoproteins to heparan sulfate is largely determined by their apoprotein composition, and apoproteins B and E display the highest affinity for heparan sulfate. Interactions of lipoproteins with heparan sulfate are important for the cellular uptake and turnover of lipoproteins, in part by enhancing the accessibility of lipoproteins to lipoprotein receptors and lipases. Apoprotein B may interact with receptors without involving heparan sulfate. Heparan sulfate has been further implicated in presentation and stabilization of lipoprotein lipase and hepatic lipase on cell surfaces and in the transport of lipoprotein lipase from extravascular cells to the luminal surface of the endothelia. In atherosclerosis, heparan sulfate is intimately involved in several events important to the pathophysiology of the disease. Heparan sulfate thus binds and regulates the activity of growth factors, cytokines, superoxide dismutase and antithrombin, which contribute to aberrant cell proliferation, migration and matrix production, scavenging of reactive oxygen radicals and thrombosis. In this review we discuss the various roles of heparan sulfate proteoglycans in vascular biology, with emphasis on interactions of heparan sulfate with lipoproteins and lipases and the molecular basis of such interactions.  相似文献   

15.
Juvenile hormone I (JH I) was identified by combined gas chromatography/mass spectrometry as the predominant JH in the hemolymph of female adults of the bean bug,Riptortus clavatus (Thunberg) (Hemiptera: Alydidae). Among JH I, II, and III, JH I was the most effective hormone for inducing the synthesis of yolk proteins in diapause adults.  相似文献   

16.
Bacterial motility is essential for chemotaxis, virulence and complex social interactions leading to biofilm and fruiting body formation. Although bacterial swimming in liquids with a flagellum is well understood, little is known regarding bacterial movements across solid surfaces. Gliding motility, one such mode of locomotion, has remained largely mysterious because cells move smoothly along their long axis in the absence of any visible organelle. In this review, I discuss recent evidence that focal adhesion systems mediate gliding motility in the social bacterium Myxococcus xanthus and combine this evidence with previous work to suggest a new working hypothesis inspired from knowledge in apicomplexan parasites. I then propose experimental directions to test the model and compare it to other pre-existing models. Finally, evidence on gliding mechanisms of selected organisms are presented to ask whether some features of the model have precedents in other bacteria and whether this complex biological process could be explained by a single mechanism or involves multiple distinct mechanisms. Received 12 April 2007; received after revision 8 June 2007; accepted 27 June 2007  相似文献   

17.
Adipose tissue is an endocrine organ capable of secreting a number of adipokines with a role in the regulation of adipose tissue and whole-body metabolism. We used two-dimensional gel electrophoresis combined with mass spectrometry to profile the secreted proteins from (pre)adipocytes. The culture medium of 3T3-L1 cells during adipocyte differentiation was screened, and 41 proteins that responded to blocking of secretion by 20°C treatment and/or brefeldin A treatment were identified. Prohibitin, stress-70 protein, and adhesion-regulating molecule 1 are reported for the first time as secreted proteins. In addition, procollagen C-proteinase enhancer protein, galectin-1, cyclophilin A and C, and SF20/IL-25 are newly identified as adipocyte secreted factors. Secretion profiles indicated a dynamic environment including an actively remodeling extracellular matrix and several factors involved in growth regulation.Received 15 June 2004; received after revision 26 July 2004; accepted 2 August 2004  相似文献   

18.
19.
The bacterial pathogen Legionella pneumophila is found ubiquitously in fresh water environments where it replicates within protozoan hosts. When inhaled by humans it can replicate within alveolar macrophages and cause a severe pneumonia, Legionnaires disease. Yet much needs to be learned regarding the mechanisms that allow Legionella to modulate host functions to its advantage and the regulatory network governing its intracellular life cycle. The establishment and publication of the complete genome sequences of three clinical L. pneumophila isolates paved the way for major breakthroughs in understanding the biology of L. pneumophila. Based on sequence analysis many new putative virulence factors have been identified foremost among them eukaryotic-like proteins that may be implicated in many different steps of the Legionella life cycle. This review summarizes what is currently known about regulation of the Legionella life cycle and gives insight in the Legionella-specific features as deduced from genome analysis. Received 1 September 2006; received after revision 10 October 2006; accepted 22 November 2006  相似文献   

20.
Therian mammals (marsupials and placentals) have an XX female: XY male sex chromosome system, which is homologous to autosomes in other vertebrates. The testis-determining gene, SRY, is conserved on the Y throughout therians, but is absent in other vertebrates, suggesting that the mammal system evolved about 310 million years ago (MYA). However, recent work on the basal monotreme mammals has completely changed our conception of how and when this change occurred. Platypus and echidna lack SRY, and the therian X and Y are represented by autosomes, implying that SRY evolved in therians after their divergence from monotremes only 166 MYA. Clues to the ancestral mechanism usurped by SRY in therians are provided by the monotremes, whose sex chromosomes are homologous to the ZW of birds. This suggests that the therian X and Y, and the SRY gene, evolved from an ancient bird-like sex chromosome system which predates the divergence of mammals and reptiles 310 MYA. Received 4 March 2008; received after revision 22 April 2008; accepted 3 June 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号